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Abstract 
This paper investigates the application of a Multilayer 

Perceptron (MLP) architecture for enhancing DC 

motor speed control by predicting optimal PID 

parameters. As a feed forward neural network, the 

MLP receives dynamic features such as error, integral 

term, and derivative term to output the predicted Kp, 

Ki, and Kd values. The architecture includes hidden 

layers utilizing ReLU activation and an output layer 

with softplus activation to ensure non-negative 

parameters. Trained using a synthesized dataset 

derived from simulating the DC motor model and 

optimizing PID parameters via a Genetic Algorithm, 

the network minimizes Mean Squared Error with the 

Adam optimizer. Simulation results demonstrate the 

MLP provides fast rise and settling times and exhibits 

computational efficiency. However, its reliance on 

static input features limits its adaptability and 

robustness in highly dynamic environments compared 

to architectures capable of temporal modeling. 
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1. Introduction 

DC motors have long stood as a cornerstone 

of electromechanical systems since their 

invention in the 19th century, owing to their 

pivotal role in converting electrical energy into 

precise mechanical movements [1]. These 

motors are integral to numerous industrial 

applications such as robotics, automotive 

systems, aerospace, and industrial automation, 

where controlled speed, torque, and position are 

paramount. For instance, robotic arms rely on 

DC motors for fine, accurate movements [1], 

while electric vehicles utilize them for efficient 

propulsion [2]. The widespread adoption of DC 

motors stems from their simplicity, reliability, 

and versatility, enabling them to remain relevant 

despite competition from AC motors [3]. 

Effective control strategies are essential for 

optimizing the performance of DC motors. 

Traditional methods, such as Proportional-

Integral-Derivative (PID) controllers, are widely 

used to regulate motor speed and torque by 

adjusting input voltage or current [4]. However, 

these techniques often assume linear system 

behavior with fixed parameters, which fails to 

account for real-world complexities like load 

variations, friction, and thermal effects [5]. As 

industries demand higher precision and 

adaptability, the limitations of conventional PID 

control become increasingly evident, 

necessitating advanced solutions capable of 

handling nonlinear dynamics and uncertain 

environments. 

In response to these challenges, adaptive control 

systems—such as Model Reference Adaptive 

Control (MRAC)—have emerged as promising 

alternatives by modifying controller parameters 

based on system feedback [6]. More recently, 

Artificial Neural Networks (ANNs) have shown 

potential in addressing nonlinear control 

problems through learning-based approaches. 

Despite this progress, there remains a significant 

research gap in applying ANNs, particularly 

Multi-Layer Perceptron (MLP) networks, to 

dynamic and nonlinear DC motor speed control 

tasks. While MLP has been explored in static 

motor applications, its use for time-varying 

scenarios remains underexplored, especially 

when compared to traditional methods like PID 

and MRAC [7]. This study aims to bridge that 

gap by implementing an intelligent ANN 

strategy—specifically, an MLP-based 

controller—to enhance the precision and 

adaptability of DC motor speed regulation. 

Leveraging the MLP’s ability to learn complex 

mappings between inputs and outputs, this 

research will focus on predicting optimal PID 
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parameters in real-time under varying operating 

conditions. The contribution lies in developing a 

novel framework that surpasses the limitations of 

conventional control methodologies, offering a 

more robust solution for nonlinear and uncertain 

motor dynamics. By evaluating the performance 

of this MLP-PID hybrid against key metrics such 

as rise time, settling time, and overshoot, this 

work seeks to demonstrate the superiority of 

ANN-based control in meeting modern industrial 

demands. 

2. Background 

2.1 DC Motor 

A Direct Current (DC) motor is an 

electromechanical device that converts electrical 

energy into mechanical motion [8]. Its 

construction consists of two primary 

components: the stator and the rotor. The stator, 

the stationary part, contains poles excited by a 

direct current to produce a magnetic field. The 

rotor, the rotating component, features a 

laminated iron core with slots housing coils. 

These coils are connected in series and interact 

with the magnetic field to generate motion [9]. 

 

 

Fig 1. DC motor rotor construction 

The principle of operation of a DC motor is 

rooted in electromagnetic induction and torque 

generation. Electromagnetic induction occurs 

when the rotor rotates within the stator's 

magnetic field, causing the armature coils to cut 

through magnetic flux lines. This induces an 

electromotive force (EMF), known as back 

EMF: 

       ( )  

Where    is the back EMF,    is the motor’s 

back EMF constant, and   is the angular 

velocity of the rotor. 

Torque generation arises from the interaction 

between the magnetic field and current flowing 

through the armature windings. The resulting 

torque drives the rotor and is expressed as: 

       ( )  

where T is the torque,    is the torque constant, 

and    is the armature current. 

The voltage equation for the armature circuit is 

given by: 

             
   
  
 ( )  

In steady-state conditions (
   

  
  ), this 

simplifies to: 

            ( )  

These equations collectively describe how 

applied voltage and current influence motor 

speed and torque, underpinning its operational 

dynamics [10]. 

 

Fig 2. DC Motor Block Diagram 

2.2 PID Controller 

The Proportional-Integral-Derivative (PID) 

controller is an important of control engineering, 

widely used for its simplicity and effectiveness 

in regulating dynamic systems such as DC 

motors. A PID controller minimizes the error 

between the desired setpoint (    ) and the 

actual output ( ( )) by applying a weighted 

sum of three terms: proportional, integral, and 

derivative. The control signal ( ( )), which 

corresponds to the applied voltage in the case of 

a DC motor [11], is computed as: 

 ( )      ( )   

   ∫  ( )        
  ( )

  
 ( )  

 

Where: 
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-  ( )   set   ( )  Error between the 

set speed and the current speed. 
-   : Proportional gain, which directly reduces the 

error. 
-   : Integral gain, which eliminates steady-state 

error by accumulating past errors over time. 
-   : Derivative gain, which minimizes overshoot 

and oscillations by predicting future trends based 

on the rate of change of the error [11]. 

2.3 Multi-Layer Perceptron (MLP) 

The Multilayer Perceptron (MLP) is a 

fundamental class of artificial neural networks 

that has demonstrated remarkable versatility in 

modeling complex, nonlinear relationships 

within data. Its architecture consists of an input 

layer, one or more hidden layers, and an output 

layer, with each layer comprising multiple 

interconnected neurons [12]. This layered 

structure enables the MLP to function as a 

universal approximator, capable of capturing 

intricate patterns in both classification and 

regression tasks. 

 

 

Fig 3. Two Layer Perceptron. 

An MLP's architecture is characterized by 

its fully connected feedforward structure, where 

each neuron in a layer connects to all neurons in 

the subsequent layer. The input layer receives 

raw data features x=[x1,x2,...,xl]∈Rl, which are 

then propagated through the network. In the 

hidden layers, neurons compute weighted sums 

of their inputs and apply a nonlinear activation 

function f( ). A commonly used activation 

function is the sigmoid function [12]: 

( )  
 

     (  )
 ( )  

3. Methodology 

3.1 DC Motor Model assumptions 

While the DC motor model presented here 

is comprehensive, certain assumptions are made 

to simplify the analysis: 

- Linearity: The relationships between 

voltage, current, torque, and speed are 

assumed to be linear. Nonlinear effects 

such as magnetic saturation are 

neglected. 

- Constant Parameters: Parameters such 

as 

(  ) (  ) (  ) (  ) ( )    ( ) are 

assumed to remain constant. Variations 

due to temperature, wear, or other 

factors are ignored. 

- Ideal Conditions: Effects such as eddy 

currents, hysteresis, and bearing friction 

are not explicitly modeled. 

These assumptions ensure that the model 

remains tractable for simulation and control 

design while still capturing the essential 

dynamics of the motor. 

3.2 DC Motor Model Parameters 

To ensure the simulation reflects real-world 

conditions, we define the parameters of a 0.5 HP, 

6000 RPM DC motor. These parameters are 

chosen based on typical values for small 

industrial motors, which are commonly used in 

robotics, automation, and precision control 

applications. The selected parameters are as 

follows: 

- Armature Resistance (Ra): 0.027 Ω 

- Armature Inductance (La): 0.002 H 

- Back EMF Constant (Ke): 0.0382 

V·s/rad 

- Torque Constant (Kt): 0.0382 N·m/A 

- Moment of Inertia (J): 5 × 10⁻⁵ kg·m² 

- Viscous Friction Coefficient (b): 5 × 

10⁻³ N·m·s/rad 

3.3 Simulating PID-Controlled DC Motor 

To simulate the behavior of a PID-controlled DC 

motor, the mathematical model of the motor 

described in Section 2.2 is integrated with the 

PID control law. The simulation involves 

numerically solving the coupled electrical and 
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mechanical equations while dynamically 

updating the control signal based on the error, 

integral term, and derivative term. Below is step 

by step instruction on the simulation is achieved 

using python programming language. 

3.4 Key Steps in DC Motor Model 

Simulation 

1. Initialization: 

- Define initial conditions, including initial 

speed   , set speed  set  load torque   , 

and PID gains           . 

- Specify simulation parameters time step = 

1*10
-4

 seconds and maximum simulation 

time of 1.5 seconds.  

2. Dynamic Calculation of Error Terms:  

- At each time step, compute the error e(t), 

integral term ∫  ( ), dt, and derivative 

term 
  ( )

  
 using numerical methods. 

3. Control Signal Computation:  

- Apply the PID control law to calculate the 

applied voltage V(t). 

4. Motor Dynamics Simulation:  

- Update the motor's speed and current 

using the electrical and mechanical 

equations: 

 ( )      ( )     
  ( )

  
   ( ) ( )  

  
  ( )

  
   ( )    ( )     ( ) ( )  

Where Eq. (7) and Eq. (8) are electrical and 

mechanical equations consecutively. 

5. Performance Evaluation: 

- Analyze the motor's response by 

calculating key performance metrics, as 

described in the next section. 

3.5 Performance Metrics 

The performance of the PID-controlled DC 

motor is evaluated using several key metrics 

derived from the step response of the system. 

These metrics provide quantitative insights into 

the controller's ability to regulate the motor's 

speed effectively. The equations for each metric 

are as follows: 

1. Rise Time (tr): The time taken for the 

motor speed to reach 90% of the set speed. 

2. Settling Time (ts): The time required for the 

motor speed to stabilize within ±2% of the 

set speed. 

3. Overshoot (Mp): The maximum percentage 

deviation above the set speed during the 

transient phase. 

   
   ( ( ))      

    
       ( )  

 

4. Steady-State Error (ess): The difference 

between the final speed and the set speed 

after the transient phase. 

       
   

| ( )      |  (  )  

5. Peak Time (tp): The time at which the 

motor speed reaches its first peak. 

6. Damping Ratio (ζ): A measure of how 

oscillatory the system is. It is derived from 

the second-order system approximation. 

  
   (      )

√   [  (      )]
 
 (  )

 

7. Natural Frequency (ωn): The frequency at 

which the system oscillates in the absence of 

damping. 

   
 

  √   
 
 (  )  

8. Down Time: The duration during which the 

motor speed falls below the set speed before 

stabilizing. 

           

∫  
  

  

           ( )       (  )  

These metrics are calculated from the simulated 

data and used to assess the effectiveness of the 

PID controller under different operating 

conditions and gain settings. 

3.6 Synthesis of Training Dataset 

The synthesis of a high-quality training dataset is 

a cornerstone in developing machine learning 

models for controlling DC motors. This dataset 

serves as the foundation for training MLP model, 

enabling it to learn the intricate relationships 

between dynamic features (e.g., error, integral 

term, derivative term) and optimal PID 

parameters (  ) (  ) (  )  

A well-synthesized dataset ensures that the 

trained models generalize effectively to unseen 

scenarios, making them robust to variations in 

operating conditions. For a DC motor control 

system, the dataset must capture the relationship 

between: 
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Input Features: Error e(t), integral term 

∫  ( )    , and derivative term 
  ( )

  
  

Output Targets: Optimal PID parameters 

(  ) (  ) (  ). 

By synthesizing the dataset, we can simulate a 

wide range of realistic operating conditions, 

ensuring that the models are exposed to diverse 

scenarios during training. This approach enables 

the development of adaptive controllers capable 

of handling dynamic and uncertain environments 

and to ensure the dataset is representative of real-

world applications, operating conditions are 

randomly sampled within predefined ranges. 

These conditions include: 

1. Initial Speed   :  

- Randomly sampled within a range (500 

– 3000 rpm). 

- Represents the motor's starting speed 

before control is applied. 

2. Set speed     : 
- Randomly sampled within a range (0 – 

3000 rpm). 

- Represents the desired speed that the 

controller aims to achieve. 

3. Load Torque   : 
- Randomly sampled within a range (0 – 

0.5 N·m). 

- Represents external forces opposing the 

motor's motion, such as friction or 

mechanical loads. 

These random samples ensure that the dataset 

captures a variety of scenarios, including low-

speed, high-speed, no-load, and loaded 

conditions. The diversity of these operating 

conditions enhances the generalization capability 

of the trained models. 

3.7 Optimization of PID Parameters 

Using Genetic Algorithm (GA) 

For each set of operating conditions, the optimal 

PID parameters (        ) are determined using 

a Genetic Algorithm (GA). GA is a heuristic 

optimization technique inspired by the process of 

natural selection. It mimics biological evolution 

by iteratively evolving a population of candidate 

solutions through processes such as selection, 

crossover [1], and mutation. In this context, each 

individual represents a set of PID parameters ( 

        ), and the fitness function evaluates the 

control performance based on metrics such as 

rise time, overshoot, and settling time. The 

process involves the following steps [13]: 

1. Encoding of Candidate Solutions:  

Each candidate solution represents a set of 

PID parameters (        ), encoded as a 

chromosome. For example, a chromosome might 

be represented as: 

           [        ] (  )  

2. Initialization of Population: 

A population of candidate solutions is 

initialized randomly within predefined bounds: 

  ∈ [             ]     

∈ [             ]    ∈ [             ] (  )  

In this context the bound are chosen between (0, 

10) for (        ). 

3. Fitness Function:  

The fitness of each candidate solution is 

evaluated using an objective function that 

minimizes a weighted combination of 

performance metrics. Common metrics include 

rise time, settling time, overshoot, and steady-

state error. For example: 

                    

              

                  

   |         |   

   |                  | (  )  

Where             are weighting factors that 

prioritize specific metrics. 

4. Selection:  

Individuals with higher fitness scores (better 

performance) are selected for reproduction. 

Techniques such as roulette-wheel selection or 

tournament selection are commonly used. 

5. Crossover: 

Pairs of selected individuals exchange 

genetic material to produce offspring. For 

example, single-point or two-point crossover can 

be applied to combine portions of two parent 

chromosomes. 

6. Mutation: 

Random changes are introduced into the 

offspring to maintain genetic diversity and 

prevent premature convergence. Mutation 

ensures that the algorithm explores new regions 

of the search space. 

7. Termination Criteria: 

The algorithm terminates when a predefined 

number of generations is reached or when the 

fitness score converges to an acceptable level. 
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The output of the GA is the set of optimal PID 

parameters (        ), for each set of operating 

conditions. These parameters are then paired 

with the corresponding dynamic features to form 

input-output pairs. 

3.8 Construction of the Dataset 

The synthesized dataset is constructed by pairing 

the extracted dynamic features (error, integral 

term, derivative term) with the optimized PID 

parameters (         ), Since these features are 

time-series data, they are repeated for each time 

step during the simulation. The dataset is 

structured as follows: 

1. Inputs (Features): 

- Error e(t) 

- Integral Term (∫  ( )    ) 

- Derivative Term (
  ( )

  
) 

2. Outputs (Targets): 

- Optimal PID parameters (         ). 

The dataset is normalized to improve the 

performance of machine learning models using 

standardization technique that scales features to 

have zero mean and unit variance as follows: 

            
   

 
 (  )  

Where (  )     (  ) are the mean and standard 

deviation of the feature. 

Finally, the dataset is split into training and 

testing sets to evaluate the model's generalization 

performance. A common split ratio is 80% for 

training and 20% for testing. 

3.9 MLP Model Design 

The MLP architecture consists of multiple fully 

connected layers, each followed by an activation 

function. For this study, the following 

configuration was adopted: 

1. Input Layer: Accepts three features which 

are error ( ( )), integral term 

(∫  ( )    ) and derivative term (
  ( )

  
). 

2. Hidden Layer: Two dense layers with 64 

and 32 neurons, respectively. The Rectified 

Linear Unit (ReLU) activation function is 

applied to introduce nonlinearity. 

3. Output Layer: Produces three outputs ( 

        ) and using the softplus activation 

function to ensure non-negative values. 

 

 

Fig 4.  MLP Architecture 

3.10 Training Process 

The MLP is trained using the synthesized dataset 

described in Section 3.8. Key aspects of the 

training process include using Mean Squared 

Error (MSE) as a Loss function to measure the 

difference between predicted and actual PID 

parameters [14], as for the optimizer, Adam 

optimizer is employed for efficient gradient-

based updates [15]. 

A batch size of 32 is selected to balance 

computational efficiency and convergence speed 

and the model is trained for 200 epochs, with 

early stopping implemented to prevent 

overfitting. 

4. Simulation Results 

The simulation is based on a high-speed DC 

motor with parameters carefully selected to 

represent a small industrial motor suitable for 

dynamic applications. The key specifications of 

the motor include an armature resistance 

(  )  (       ), armature inductance 

(  )           , back EMF constant    and 

torque constant (  ) of                 , 

                 respectively, a moment of 

inertia ( )                , and a viscous 

friction coefficient ( )               
       These parameters define the motor's 

electrical and mechanical behavior during 

operation, The simulation time step (  ) was set 

to (        ), with a maximum simulation 

duration of (       ) PID parameters were 

updated at regular intervals (        ) to ensure 

real-time adaptability. 

assess the robustness and adaptability of the 

control strategies, three distinct trailer scenarios 

were simulated, each with varying target speeds, 

initial speeds, and load torques. The results are 

presented in tabular form for each trial, followed 

by step response figures that illustrate the 

performance of MLP model. 
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1. Trail 1 (Low Speed Operation): initial 

speed is set to 500 RPM, Target Speed of 

1500 RPM and Load Torque of 0.2 N.m. 

 

Fig. 5 Step Response of MLP model for Trial 

1 (Low-Speed Operation) 

 

Fig. 6 Voltage output of MLP model for trail 1 

2. Trail 2 (High Speed Operation): initial 

speed is set to 1000 RPM, Target Speed of 

2000 RPM and Load Torque of 0.05 N.m. 

 

 

Fig. 7 Step Response of MLP model for Trial 

2 (High-Speed Operation) 

 

 

Fig. 8 Voltage output of MLP model for trail 2 

3. Trail 3 (Variable Speed Operation): initial 

speed is set to 500 RPM, Target Speed start 

from            with periodic increment 

of 500 RPM until the set speed reaches 2500 

RPM for every 1 second, then decreases 

speed by 400 RPM for every 1 second also, 

until it reaches a set speed of 1700 RPM, the 

entire simulation duration is 5 seconds and 

finally a variable load torque which is 

randomly set with every change in set speed 

between 0.05 and 0.5 N.m. 

 

  

Fig. 9 Step Response of MLP model for Trial 

3 (Variable-Speed Variable-Torque 

Operation) 

 

Fig.10 Voltage output of MLP model for trail 

3 
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Table 1 Performance metrics for Trail 1 to 3 

MLP 

Metric Trail 1 Trail 2 Trail 1 

Rise 

Time (s): 0.0122 0.0103 0.0072 

Settling 

Time (s): 0.0296 0.0283 0.0198 

Down 

Time (s): inf inf 0.0231 

Oversho

ot (%): -0.7591 -0.6971 -0.7583 

Steady-

State 

Error: 11.5865 15.2061 15.1447 

Peak 

Time (s): 0.3496 0.4395 0.2397 

Damping 

Ratio: 0.8409 0.8451 0.841 

Natural 

Frequenc

y (rad/s): 16.6032 13.3704 25.2575 

5. Conclusion 

This study evaluated artificial neural network 

strategies for DC motor speed control, 

specifically focusing on the Multilayer 

Perceptron (MLP) as a predictor for PID 

parameters based on simulation results and 

discussion. Simulation analysis indicated that 

MLP demonstrated rapid response 

characteristics, exhibiting the shortest rise times 

and competitive settling times compared to other 

methods. MLP also proved to be the most 

computationally efficient among the strategies 

investigated, making it suitable for systems with 

limited resources. However, its reliance on static 

input features meant that MLP struggled to 

match the desired adaptability and robustness in 

dynamic environments, and it showed higher 

steady-state errors in simulation trials. 

Consequently, MLP is best suited for resource-

constrained systems or applications operating 

under relatively stable conditions, where 

computational efficiency and rapid initial 

response are priorities and significant dynamic 

variations are minimal. 
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