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Abstract— Processors frequently employ inclusive caches to 

make cache coherence simpler. Lower performance in 

comparison to exclusive and non-inclusive caches has been the 
trade-off, though. Contrary to popular belief, we demonstrate 
that the poor performance of inclusive caches is mostly caused 

by inclusion victims, or lines that must be removed from the 
hierarchy's core caches in order to meet the inclusion feature. 
The last-level cache (LLC) is blind to the temporal locality of 

lines in the core caches, hence it chooses these inclusion victims 
for replacement wrongly. To enable an inclusive LLC to be 

aware of the temporal locality of lines in the core caches, we 
propose Temporal Locality Aware (TLA) cache management 
policies.To enable an inclusive LLC to be aware of the 

temporal locality of lines in the core caches, we propose 
Temporal Locality Aware (TLA) cache management policies. 
Temporal Locality Hints (TLH), Early Core Invalidation 

(ECI), and Query Based Selection are the three TLA policies 
that we recommend (QBS). All three policies enhance the 
performance of the inclusive cache without adding any new 

hardware structures. In actuality, QBS functions in a manner 
akin to a non-inclusive cache hierarchy. 
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I. INTRODUCTION 

As CMPs become widespread and the gap between processor 
and memory speeds continues to widen, it is imperative that 
processor architects design an efficient and high performing 
cache hierarchy. One of the key design choices for a multi- 
level cache hierarchy is whether or not to enforce inclusion [6, 
27, 17]. While inclusion greatly simplifies the cache 
coherence protocol [9, 6], it limits performance when the size 
of the largest cache is not significantly larger than the sum of 
the smaller caches. In such scenarios, CPU architects resort to 
non-inclusive [27] or exclusive [17] cache hierarchies. This 
paper focuses on improving inclusive cache performance 
without sacrificing its benefits. 

The inclusion property requires that the contents of all the 
smaller caches of a multi-level cache hierarchy be a subset of 
the last-level cache (LLC) [6]. When a line is evicted from the 
LLC, inclusion is enforced by removing that line from all the 
caches in the hierarchy. We refer to cache lines invalidated in 
the small caches as a result of inclusion as inclusion victims. 
The small caches, from here on referred to as core caches, 
hide the temporal locality from the LLC when they service 
requests. Since replacement state is only updated to Most 
Recently Used (MRU) on cache hits, the LLC replacement 
state of ―hot‖ lines constantly serviced by the core caches 
decays to least recently used (LRU) in the LLC. As a result, 

the ―hot‖ lines become candidates for eviction in the LLC. The 
number of inclusion victims dramatically increases when 
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multiple applications compete for the LLC or when the 
LLC is not significantly larger than the sum of all the 
core caches. 

A straight forward mechanism to eliminate 
inclusion victims would be to remove the requirement 
that core caches be a subset of the LLC. Such a cache, 
known as a non- inclusive cache [10], allows cache 
lines to reside in the core cache(s) without also being 
duplicated in the LLC. In doing so, non-inclusion 
increases the effective capacity of the cache hierarchy 
[27, 29]. Unfortunately, non-inclusion eliminates the 
natural snoop filter benefit that an inclusive LLC 
provides, thus breaking the coherence benefits that 
come with inclusivity [6]. While snoop filters [5, 22, 
23] can be used in addition to the LLC, such structures 
increase the hardware overhead [29] and verification 
complexity [9]. It would be ideal to design a cache 
hierarchy that reduces (if not eliminates) the frequency 
of inclusion victims while providing the coherence 
benefits of inclusion. Thus, our goal is to bridge the 
performance gap between inclusion and non-inclusion 
by improving the management of an inclusive LLC. 

It is a widely held belief that the primary benefits of a non- 
inclusive cache hierarchy come from the increase in 
the effective caching capacity [1, 27, 29]. However, we 
show that the first order benefit of non-inclusion is the 
elimination of inclusion victims and not the extra 
cache capacity. In light of this observation, we 
illustrate that inclusive hierarchies can perform similar 
to non-inclusive hierarchies by preserving hot lines in 
the core caches and extending the life time of these 
lines in the LLC. We propose Temporal Locality Aware 
(TLA) inclusive cache management policies to reduce 
the frequency of harmful inclusion victims. The 
success of TLA policies requires identifying lines that 
have high temporal locality in the core caches and 
preventing LLC replacement of these lines until their 
temporal locality is exhausted in the core caches. We 
propose three TLA cache management policies where 
the identity of hot lines is either conveyed to, derived 
by or inferred by the LLC. 

• Temporal Locality Hints (TLH) convey the 
temporal locality of ―hot‖ lines in the core caches 
by sending hints to the LLC to update its 
replacement state. With the same temporal 
information as the core caches, the LLC is 
significantly less likely to choose a victim that will 
cause an inclusion victim. 

• Early Core Invalidation (ECI) derives the 
temporal locality of a line before it becomes LRU 
in the LLC. The LLC chooses a line early and 
invalidates that line in the core caches, while 
leaving the line in the LLC. By observing the 
core‘s subsequent request, the LLC derives the 
temporal locality. 
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Figure 1: Summary of Cache Hierarchies. 

 

• Query Based Selection (QBS) infers the temporal 
locality of a line in the LLC by querying the core caches. 
The LLC selects a line for replacement and queries the 
core caches for approval. The LLC uses the information 
provided by the core caches to infer the temporal locality 
and select a victim. QBS employs the heuristic that the 
core has better information about temporal locality, and it 
is best suited to propose which lines can be evicted. 

Our evaluations on 2-core, 4-core, and 8-core CMPs show that 
the three TLA cache management proposals improve 
inclusive cache performance with QBS performing similar to 
a non-inclusive cache. We also show that the proposed 
policies do not require any additional hardware structures and 
only require extra messages in the system. 

The organization of the paper is as follows: Section II 
provides a more in depth motivation for the work; Section III 
introduces TLA cache management; Section IV describes our 
experimental methodology, followed by our experimental 
results in Section V. Section VI discusses related work and we 
summarize in Section VII. 

II. MOTIVATION 

Figure 1 illustrates the different types of cache hierarchies. An 
inclusive cache hierarchy requires that the contents of the 
smaller cache levels be a subset of the LLC. When a line is 
evicted from the LLC, inclusion is enforced by back- 
invalidating (i.e., removing) that line from the smaller cache 
levels (if present). The capacity of an inclusive cache 
hierarchy is equal to the size of the LLC. Inclusive caches are 
beneficial because they serve as a natural snoop filter. When 
an LLC lookup results in a miss, no snoops need to be sent to 
the core caches because they are guaranteed to not be present 
in the core caches. A non-inclusive cache hierarchy, on the 
other hand, does not guarantee that the smaller cache levels be 
a subset of the LLC. As such, the capacity of a non-inclusive 
cache hierarchy ranges between the size of the LLC and the 
sum of all levels in the cache hierarchy. Finally, an exclusive 
cache hierarchy requires that the contents of any cache level 
are not replicated in any other cache level. Exclusive 
hierarchies first fill cache lines at the smallest level in the 
hierarchy and fill them into subsequent larger cache levels 
upon eviction from the smaller cache levels. Exclusive caches 
require higher bandwidth since even clean victims from the 
core caches have to be written to the LLC. The capacity of an 
exclusive cache hierarchy is equal to the sum of the sizes of all 

 
 

the caches in the hierarchy. Unfortunately, non-inclusive and 
exclusive caches increase the capacity of a hierarchy by 
sacrificing the natural snoop filter benefits of inclusive caches. 

In general, the choice of cache hierarchy is dependent on 
the ratio of the size of small caches (i.e., core caches) to the 
LLC. Figure 2 compares the performance of non-inclusive and 
exclusive LLCs to an inclusive LLC for various core cache to 

LLC size ratios. The figure shows that inclusive caches 
typically perform worse than non-inclusive and exclusive 
caches. When the LLC size is more than 8X larger than the 
core caches, the performance of non-inclusive and exclusive 
LLCs are similar to an inclusive LLC. However, when the 
LLC shrinks, both non-inclusive and exclusive LLCs perform 
significantly better than inclusive LLCs. 

Modern day Intel microprocessors (like the Intel Core i7 
processor) have a 1:8 cache ratio and implement inclusive 
LLCs [4] while AMD microprocessors (like the Phenom II 
processor) have a 1:4 cache ratio and implement non-inclusive 
LLCs [1]. The figure shows that inclusive LLCs with 1:8 ratio 
have an average of 3% (max 12%) worse performance than 
non-inclusive/exclusive LLCs. Similarly, inclusive LLCs with 
a 1:4 ratio have an average of 8% (up to 33%) worse 
performance than non-inclusive/exclusive LLCs. For such 
cache ratios, it is better not to enforce inclusion. Both non- 
inclusive/exclusive LLCs improve performance over inclusive 
LLCs by eliminating inclusion victims and increasing the 
effective caching capacity of the hierarchy. Since we cannot 
change the requirement that inclusion duplicate lines in the 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2: Performance of Non-Inclusive and Exclusive LLCs. 
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Figure 3: Illustration of Temporal Locality Aware Cache Management Policies. 

 

LLC, we focus on eliminating inclusion victims to improve 
inclusive cache performance. 

Inclusion victims manifest on CMPs whenever 
applications with working set sizes that fit in the core caches 
concurrently execute with applications that have working set 
sizes that are greater than or equal to the size of the LLC. In 
such situations, the core caches hide all the temporal locality 
of the core cache fitting (CCF) applications from the LLC. 
Consequently, the LLC replacement state of cache lines 
belonging to the CCF applications decay towards LRU when 
LLC fitting (LLCF) or LLC thrashing (LLCT) applications 
exercise the LLC. As a result, the CCF applications suffer 
from inclusion victims even though they have high temporal 
locality in the core caches. 

The problem of inclusion victims is not intrinsic to CMPs 
alone. It can also manifest in a single-core, single-threaded 
system where non-unified instruction and data caches share a 
unified LLC. For example, a streaming application whose 
instruction working set fits in its instruction cache can suffer 
from inclusion victims when references to non-temporal data 
evict the instruction working set from the LLC. Maintaining 
inclusion and avoiding inclusion victims for code lines is 
applicable for architectures that require code lines to be 
coherent due to self-modifying code (e.g. x86). Inclusive 
cache performance can be improved if the LLC knew of the 
temporal locality of lines in the core caches. To address this 
problem, the next section proposes Temporal Locality Aware 
cache management policies for LLCs. 

 

III. TEMPORAL LOCALITY AWARE (TLA) MANAGEMENT 

In a multi-level hierarchy, the core caches act as a filter and 
hide the temporal locality from the LLC. Thus, the LLC only 
observes the references that miss in all levels prior to the LLC. 
For lines that have high temporal locality in the core caches, 
the replacement state of the line in the LLC can decay to LRU. 
The line eventually gets evicted from the LLC and due to the 
inclusive hierarchy, the line is also evicted from the core 
caches (an inclusion victim). To illustrate this problem, 
consider the following unfiltered cache reference pattern: 

. . . a, b, a, c, a, d, a, e, a, f, a, . . . . 

Note that the references to 'a' have high temporal locality. 
Figure 3 illustrates a two-level inclusive cache hierarchy with 
a fully associative 2-entry L1 cache and a fully-associative 4- 
entry LLC. Both the L1 and LLC start with all entries invalid. 
The boxes and arrows represent the LRU chain, with the 
MRU line on the left and LRU line on the very right. The 
figure starts after the reference to ‗c‘. 

Figure 3a illustrates the behavior of an inclusive cache 
hierarchy. The figure shows that in L1 'c' is the MRU entry 
and 'a' is the LRU entry. In the LLC, 'c' is the MRU entry, and 
the LRU entry is an invalid line, ‗I‘. The next reference to 'a' 
hits in the L1 cache and updates 'a' to the MRU position. Since 
'a' hits in the L1 cache, only the L1 replacement state is 
updated and the LLC replacement state stays unchanged. The 
next reference, 'd', misses in the hierarchy and replaces lines 'c' 
and 'I' in the L1 and LLC respectively. Line 'a' is now the LRU 
line in both the L1 and LLC. 
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Figure 4: Temporal Locality Aware (TLA) Cache Management Policies. 

 

The next reference to 'a' hits in the L1 cache. Again, 'a' is 
moved to the MRU position of the L1 cache and no 
replacement updates occur in the LLC. The next reference 'e' 
misses in both the L1 and LLC. Since 'a' is now the LRU entry 
in the LLC, it is chosen for eviction, even though it is the 
MRU line in the L1 cache. Due to the enforcement of 
inclusion, line 'a' is an inclusion victim and is removed from 
the L1 cache leaving an invalid entry behind (not shown in the 
figure). Line 'e' takes the place of 'a' in the LLC and the invalid 
entry left behind by 'a' in the L1 cache. Line 'e' is promoted to 
the MRU position in both the caches. The next reference, 'a', 
misses in both the L1 and LLC. For the above reference 
pattern, line 'a' misses to memory on every ninth reference to 
the L1 cache, despite its high temporal locality. If the LLC 
were non-inclusive or if the temporal locality of 'a' was not 
hidden from the LLC by the L1, 'a' would never have been 
back-invalidated and suffer a core cache miss. 

Reducing the harmful effects of inclusion requires that 
lines with high temporal locality in the core caches not be 
chosen for eviction in the LLC until their temporal locality in 
the core caches is exhausted. This implies that the LLC 
replacement state should be made aware of the temporal 
locality of lines in the core caches. 

A. Temporal Locality Hints (TLH) 

Inclusion victims can be eliminated by conveying the 
temporal locality of lines in the core caches to the LLC. A 
direct mechanism would be to inform the LLC of the 
unfiltered temporal locality. On a hit in the core caches, 
temporal locality information can be conveyed to the LLC by 
issuing a Temporal Locality Hint (TLH) (see Figure 4). The 
hint is a non-data request that updates the replacement state of 
the line in the LLC. The heuristic used is that if a line is hot in 
a core cache, it is worth preserving in the LLC. 

We illustrate the use of TLHs in Figure 3b. At the L1 
cache, the replacement behavior remains the same as the base 
case. For every L1 cache hit, the line is moved to the MRU 
position in the L1 cache and a TLH is sent to the LLC. The 
LLC uses the hint to promote that line to the MRU position in 
its LRU chain. Thus, in our example reference pattern, L1 
cache hits on 'a' update the LRU state in both the L1 and LLC. 
Thus, when the reference to 'e' occurs, 'a' is not in the LRU 
position and is not evicted from the LLC. By conveying the 
temporal locality of ‗a‘, TLHs prevent inclusion victims. 

TLHs can significantly reduce the number of inclusion 
victims because they keep the LLC replacement state up-to- 

 
 

date with the core caches. However, the downside is that they 
send a request to the LLC for every hit in the core caches. 
Optimizations can be made by filtering the number of TLHs 
sent from the core caches to the LLC. For example, in a multi- 
level hierarchy, the second level cache can issue TLHs instead 
of the first level cache. Alternatively, the L1 cache can issue 
TLHs for non-MRU lines. However, even with filtering of 
TLHs to the LLC, the number of requests to the LLC is 
extremely large and does not scale well with increasing 
number of cores. Thus, for the purpose of this study, we 
evaluate the use of TLHs as a limit study to determine the 
potential performance of avoiding inclusion victims 
altogether. Instead of using TLHs, we propose alternative low 
overhead solutions: Early Core Invalidation (ECI) and Query 
Based Selection (QBS). 

B. Early Core Invalidation (ECI) 

Early Core Invalidation (ECI) is a method for deriving the 
temporal locality of a line. The intent is to invalidate a line 
from the core caches early (but retain the line in the LLC) and 
observe a core's response to derive the line‘s temporal locality. 
If the line is hot in a core cache, the core will re-request it. If 
this request arrives before the line gets evicted from the LLC, 
it will be a hit. As with all hits, the temporal locality at the 
LLC causes a replacement state update. If a core does not re- 
reference the line, or the re-reference takes too much time, the 
line will be evicted by the next miss to that set. 

Sending an ECI to the core caches is relatively straight 
forward. As illustrated in Figure 4b, upon a miss in the LLC, 
the standard victim flow happens normally—a victim is 
selected and evicted from the LLC and core caches

1
 to make 

room for the incoming line. ECI adds another step to the miss 
path by selecting another victim (the next LRU line) and 
sending an ECI to the core caches to have that line evicted. 
The line still remains in the LLC

2
 though. 

We illustrate the behavior of ECI in Figure 3c. Unlike 
TLHs no update traffic to the LLC is required. When the 
reference to 'd' misses in both the L1 and LLC, the miss at the 
LLC is handled as usual by evicting the LRU line, ‗I‘. With 
ECI, the next LRU line, 'a', is also evicted from the L1 cache 
(it is still retained in the LLC). This results in 'd' being MRU 
in L1 and LLC, and 'I' and 'a' being LRU in the L1 and LLC 

 

1. Like the Core i7, a directory is maintained with each LLC line to 
determine the cores to which a back-invalidate must be sent [3]. 

2. The directory bits of the LLC line are updated as usual. 
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respectively. The next reference to 'a' (at t=3), misses in L1 but 
hits in the LLC. This updates the replacement state of 'a' in the 
LLC. By prematurely evicting line 'a' from the core caches and 
then observing the subsequent request for ‗a‘, the LLC derived 
that 'a' was hot, and captured the temporal locality of 'a'. 

Note, however, that ECI is time sensitive. The core must 
re-reference the line within a window of opportunity. For 
instance, had a new line been referenced at t=3 before the re- 
reference to ‗a‘, 'a' would have been evicted. A line has to be 
hot relative to the time window, a time window that will vary 
depending on the level of contention at the LLC. 

With ECI, the number of lines that need to be invalidated 
in the core caches on each LLC miss can be either one or two. 
If an early invalidated line has not been re-referenced, it is not 
in any core caches. Thus, when the next miss occurs, that line 
is chosen as the victim, and because it is not in any core 
caches, the back-invalidate request is not required. Only the 
ECI needs to be sent out for the next LLC victim. In contrast, 
if an early invalidated line is re-referenced by a core before 
LLC eviction, its LLC replacement state is updated. Thus, the 
next miss after such a hot line rescue will need to find a victim 
to evict, which will incur a normal invalidate as required by 
inclusion along with the ECI to derive the temporal locality of 
the next potential victim. Note that ECI happens in the shadow 
of the miss to memory, and thus is not time critical. 

As compared to TLHs, ECI is a lower traffic solution to 
derive a line‘s temporal locality. This is because the number of 
TLHs is directly proportional to the number of core cache hits 
(which is high) while ECI request traffic is directly 
proportional to the number of LLC misses (which is orders of 
magnitude smaller than the number of core cache hits). There 
are trade-offs though. The early invalidate is a prediction that 
the line will not be needed by the core caches. If the prediction 
is incorrect, the scheme allows a time window (until the next 
miss to that set) for the core caches to correct the prediction by 
re-requesting the line. If the core re-requests the line in that 
time window, then the downside is that what would've been a 
hit in the core caches has become a hit in the LLC. The added 
latency of getting the data from the LLC instead of the core 
caches is traded against extending the line's lifetime in the 
LLC. The more significant downside is when the re-request 
for the line misses the time window. The consequence is an 
LLC miss that must be serviced from main memory. The time 
window for a core to re-reference an early invalidated line 
restricts the ability of the LLC to fully derive the temporal 
locality, and thus limits the potential benefits of ECI. 

C. Query Based Selection (QBS) 

To address the drawbacks of ECI, we propose Query Based 
Selection (QBS). Like ECI, QBS is also initiated from the 
LLC. Instead of invalidating a line early and having the cores 
re-request it, QBS avoids invalidating lines in the core caches 
altogether. QBS queries the core caches and has them indicate 

core caches to determine if the line can be evicted from the 
LLC. If the line is not present in any of the core caches, QBS 
evicts this line to make space for the incoming line. However, 
if the current victim line is present in any of the core caches, 
QBS updates the line's LLC replacement state to MRU and 
extend its lifetime in the LLC. Since a victim still needs to be 
selected, a new victim is chosen and the process repeats. The 
QBS victim selection process is typically hidden by memory 
latency. Should the data arrive from memory before QBS 
selects a victim, the cache controller can either wait for QBS 
to finish selecting a victim or force QBS to select the next 

victim. Alternatively, the cache controller can limit the 
number of queries issued on an LLC miss. When the 

maximum is reached, the next victim line is selected for 
replacement and no further queries are sent to the core caches. 

We illustrate the behavior of QBS in Figure 3d. When the 
reference to 'e' misses in the LLC, QBS queries the core 
caches to determine whether it can evict the first potential 
LLC victim, 'a'. When the core caches are queried for 'a', the 

core responds that the line is present in the L1 cache. 
Consequently, the LLC replacement state of ‗a‘ is updated to 
MRU and a query for the next victim, 'b', is sent. Since ‗b‘ is 
not resident in the L1 cache, the core allows 'b' to be replaced 
from the LLC. Thus, when 'a' is re-referenced, it hits in the L1 
cache. QBS has prevented 'a' from being an inclusion victim. 

By preventing the LLC from evicting lines that are still 
resident in the core caches, QBS prevents ―hot lines‖ from 
becoming inclusion victims. QBS addresses the time window 
problem of ECI and avoids LLC misses. 

IV. EXPERIMENTAL METHODOLOGY 

A. Simulator 

We use CMP$im [16], a Pin [19] based trace-driven x86 
simulator for our performance studies. Our baseline system is 
a 2-core CMP. Each core in the CMP is a 4-way out-of-order 
processor with a 128-entry reorder buffer and a three level 
cache hierarchy. Without loss of generality, we assume a 
single-thread per core. The L1 and L2 caches are private to 
each core. The L1 instruction and data caches are 4-way 32KB 
each while the L2 cache is unified 8-way 256KB. The L1 and 
L2 cache sizes are kept constant in our study. We support two 
L1 read ports and one L1 write port on the data cache. The 
baseline last-level cache (LLC) is a unified 16-way 2MB 
cache that is shared by both the cores in the CMP. We assume 
a banked LLC with as many banks as there are cores in the 
system. Like the Intel Core i7, we model a non-inclusive L2 
cache and only the last-level cache enforces inclusion

3
. All 

caches in the hierarchy use a 64B line size. For replacement 
decisions, the L1 and L2 caches use the LRU replacement 
policy while the LLC uses the Not Recently Used (NRU) 
replacement policy

4
 [2, 14]. We model a stream prefetcher 

that trains on L2 cache misses and prefetches lines into the L2 
cache. The prefetcher has 16 stream detectors. The load-to-use 

if a line is resident in the core caches and uses that information    
to infer the temporal locality of those lines. Lines resident in 

the core caches are inferred to have high temporal locality and 
are not evicted from the LLC. 

As illustrated in Figure 4c, on an LLC miss, the cache 
controller selects the LRU line as the victim and queries the 

3. Modern processors [1, 2, 3] use non-inclusive L2 caches. If the L2 were 
inclusive, TLA policies can be applied at the L2 cache to perform 
similar to non-inclusive caches. We verified this in our studies. 

4. The inclusion problem is independent of the LLC replacement policy. 
The problem occurs with LRU replacement as well as more intelligent 
replacement policies (e.g. RRIP [14]). We verified this in our studies. 
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TABLE I. MPKI of Representative SPEC CPU2006 Applications In the Absence of Prefetching 
 

 ast bzi cal dea gob h26 hmm lib mcf per pov sje sph wrf xal 

L1 MPKI (64KB) 29.29 19.48 21.19 0.95 10.56 11.26 4.67 38.83 21.51 0.42 15.08 0.99 19.03 16.50 27.80 

L2 MPKI (256KB) 17.02 17.44 14.06 0.22 7.91 1.57 2.76 38.83 20.43 0.20 0.18 0.37 16.20 15.18 3.38 

LLC MPKI (2MB) 3.16 7.25 1.42 0.08 7.70 0.16 1.21 38.83 20.30 0.11 0.03 0.32 14.00 14.67 2.30 

 

latencies for the L1, L2, and LLC are 1, 10, and 24 cycles 
respectively. We model a 150 cycle penalty to main memory 
and support 32 outstanding misses to memory. The cache 
hierarchy organization and latencies are based on the Intel 
Core i7 processor [3]. The proposed policies do not rely on the 
specific latencies used. We have verified that the proposed 
policies perform well for different latencies including pure 
functional cache simulation. We compare the policies using 
both the throughput

5
 and cache performance metrics. 

We model an interconnect with a fixed average latency. 
Bandwidth onto the interconnect is modeled using a fixed 
number of MSHRs. Contention for the MSHRs models the 
increase in latency due to additional traffic introduced into the 
system. All transactions, including those for ECI and QBS, 
use existing data paths and contend for the MSHRs. We do not 
model bandwidth limitations for the Temporal Locality Hints 
(TLH). TLHs serve as a limit study on potential performance 
improvement if temporal locality information from all levels 
in the hierarchy were available at the LLC. 

We also compare the performance of the proposed TLA 
policies to non-inclusive and exclusive cache hierarchies. 
Cache latencies are identical to the baseline inclusive cache 
hierarchy for both these cache hierarchies. A non-inclusive 
cache hierarchy is modeled by not sending back-invalidates to 
the core caches when replacing lines from the LLC. To model 
an exclusive cache hierarchy we modify both the hit and miss 
paths. Lines are invalidated in the LLC upon cache hits. As for 
the miss path, new lines are inserted into the core caches first. 
These lines are inserted into the LLC only after they are 
evicted from the core caches. Exclusive caches typically 
require higher LLC bandwidth because even clean victims 
from the core caches must be inserted into the LLC. We do not 
model this increased bandwidth, and thus our results for 
exclusive caches are optimistic. 

B.   Benchmarks 

The SPEC CPU2006 benchmarks were first grouped into 
three different categories based on their L1, L2, and LLC 
cache hit behavior. The first category is those applications 
whose working set fits in the core caches. We refer to these 
applications as core cache fitting (CCF) applications. The 
second category is those applications whose working set fits in 
the LLC. We refer to these applications as LLC fitting (LLCF) 
applications. Finally, the third category is those applications 
whose working set is larger than the LLC. We refer to these 
applications as LLC thrashing (LLCT) applications. Of all the 
SPEC CPU2006 benchmarks, we selected five from each 

 
 

5. We compared the performance of the TLA policies on both the weighted 
speedup and hmean-fairness metrics. Since the TLA policies do not 
introduce any fairness issues, they perform similar to the throughput 
metric for both weighted speedup and hmean-fairness metrics. 

category to cover the spectrum of hit/miss behavior in the 
different levels of the cache hierarchy. The 15 representative 
SPEC CPU2006 benchmarks were compiled using the icc 
compiler with full optimization flags. Representative regions 
for the SPEC benchmarks were all collected using PinPoints 
[20]. Table I lists the 15 SPEC CPU2006 benchmarks and 
their misses per 1000 instructions (MPKI) in the L1, L2, and 
LLC when run in isolation. The MPKI numbers are reported 
in the absence of a prefetcher. 

Based on the MPKI values in Table I, dealII, h264ref, 
perlbench, povray, and sjeng all have small miss rates in the 
L2 cache. This implies that these benchmarks have working 
sets that fit into the core caches. Thus, for our baseline cache 
hierarchy, we can classify these applications as CCF 
applications. The benchmarks gobmk, libquantum, mcf, 
sphinx3, and wrf all have working set sizes that are larger than 
the baseline LLC size. This is because these applications have 
almost as many misses as there are accesses to the LLC. Thus, 
for our baseline cache hierarchy, these applications can be 
classified as LLCT applications. Finally, the benchmarks 
astar, bzip2, calculix, hmmer, and xalancbmk all have working 
set sizes larger than the L2 cache but benefit from the LLC. 
Thus, for our baseline cache hierarchy, we can classify these 
applications as LLCF applications. 

In general, CCF applications are vulnerable to inclusion 
related evictions when concurrently executing with LLCT or 
LLCF applications. To study the effects of inclusion, we ran 
all possible two-threaded combinations of the 15 SPEC 
benchmarks, i.e. 15 choose 2—105 workloads. To provide 
insights on when TLA policies are beneficial, we selected 12 
workload mixes (listed in Table II) to showcase results. 
However, we provide results for all 105 workloads. 

We simulated 250 million instructions for each 
benchmark. Simulations continue to execute until all 
benchmarks in the workload mix execute at least 250 million 
instructions. If a faster thread finishes its 250M instructions, it 
continues to execute to compete for cache resources. We only 
collect statistics for the first 250 million instructions 
committed by each application. This methodology is similar to 
existing work on shared cache management [15, 21, 25]. 

 
TABLE II. Workload Mixes 

 

Name Apps Category Name Apps Category 

MIX_00 bzi, wrf LLCF, LLCT MIX_06 hmm, xal LLCF, LLCF 

MIX_01 dea, pov CCF, CCF MIX_07 dea, wrf CCF, LLCT 

MIX_02 cal, gob LLCF, LLCT MIX_08 bzi, sje LLCF, CCF 

MIX_03 h26, per CCF, CCF MIX_09 pov, mcf CCF, LLCT 

MIX_04 gob, mcf LLCT, LLCT MIX_10 lib, sje LLCT, CCF 

MIX_05 h26, gob CCF, LLCT MIX_11 ast, pov LLCF, CCF 
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V. RESULTS AND ANALYSIS 

A. Temporal Locality Hints – A Limit Study 

Figure 5 shows the throughput normalized to the baseline 
inclusive cache hierarchy when all requests at different levels 
in the hierarchy send TLHs. As a reminder, we do not model 
any bandwidth constraints when sending TLHs to the LLC. 
The first three bars in the figure show the performance when 
the L1 instruction cache alone sends TLHs (TLH-IL1), the L1 
data cache alone sends TLHs (TLH-DL1), and when both L1 
instruction and data caches send TLHs (TLH-L1). The x-axis 
represents the different workload mixes and the bar labeled All 
represents the geomean of all 105 workloads used in the study. 
TLH-IL1 and TLH-DL1 alone improve throughput by 5% or 
more for the workload mixes MIX_08, MIX_09, MIX_10, 
and MIX_11. For these workload mixes, the performance 
improvements are additive when both the IL1 and DL1 caches 
send TLHs (i.e., TLH-L1). This is because these workload 
mixes are composed of a CCF application that is running 
concurrently with an LLCT or LLCF application. Sending 
TLHs from the core caches prevents LLCT and LLCF 
applications from evicting the cache lines of CCF applications 
from the LLC. This allows TLHs to improve the performance 
of an inclusive cache by as much as 31%. The figure also 
shows that homogeneous workload mixes of CCF applications 
(MIX_01 and MIX_03) or workload mixes that have a 
combination of LLCT and LLCF applications (workload 
mixes MIX_00 and MIX_02) receive no benefits from TLHs. 
For such mixes, inclusion victims are not a problem because 
either all benchmarks have working sets that fit in the core 
caches or all have working set sizes that are larger than the 
core caches. On average, TLH-IL1, TLH-DL1, and TLH-L1 
improve throughput by 2.6%, 2.5% and 5.2% respectively. 

Figure 5 also presents the performance of TLHs when only 
the L2 cache hits send a TLH to the LLC (TLH-L2). On 
average, TLH-L2 has roughly two-thirds the performance of 
TLH-L1. For example, MIX_10 observes only 7% 
improvement in throughput with L2 generated TLHs 
compared to 24% improvement from L1 generated TLHs. 
MIX_10, consists of benchmarks libquantum and sjeng. From 
Table I, we see that libquantum has no locality in any of the 
caches while sjeng has good L1 cache locality. Thus, TLH-L2 

is unable to refresh the LRU state of the lines belonging to 
sjeng in the LLC. 

Figure 5 also illustrates that the performance of TLH-L1 
and TLH-L2 is not additive when both the L1 and L2 caches 
send TLHs (TLH-L1-L2). In fact, TLH-L1 provides the bulk 
of the performance improvements when all levels in the 
hierarchy send TLHs. Figure 5 shows that TLH-L1 bridges 
85% of the gap between inclusive and non-inclusive cache 
hierarchies while TLH-L2 only bridges 45% of the gap 
between inclusive and non-inclusive caches. Figure 5 also 
shows the s-curve for the throughput improvement of TLH- 
L1, TLH-L2, and a non-inclusive LLC for all 105 two-core 
workload mixes. The s-curve is sorted based on non-inclusive 
cache performance. In the figure, ‗x‘ represents TLH-L2 and 
triangles represent TLH-L1. The figure shows that TLH-L1 
closely tracks the performance of non-inclusion for the bulk of 
the workloads. These results show that the performance of a 
non-inclusive cache hierarchy can be achieved by allowing an 
inclusive LLC to be aware of the global temporal locality of 
lines that are resident in the LLC. 

While TLH-L1 bridges the gap between inclusive and 
non-inclusive caches, the number of LLC requests increase by 
almost 600X. In comparison, TLH-L2 increases the number of 
requests to the LLC by about 8X. We conducted a sensitivity 
study on the fraction of hits that can send hints to the LLC. 
When 1%, 2%, 10%, and 20% of core cache hits in the L1 
cache generate TLHs, they bridge the gap between inclusive 
and non-inclusive cache hierarchies by 50%, 60%, 75%, and 
80% respectively. However, even when 1% of hits in the L1 
cache send TLHs, the number of LLC requests still increases 
by 6X or more. Thus, while TLH-L1 can potentially bridge 
the performance gap between inclusive and non-inclusive 
cache hierarchies, the high bandwidth demands required by 
TLHs require an alternate low bandwidth technique to allow 
the LLC to derive or infer the global temporal locality. 

B. Early Core Invalidation 

Figure 6 presents the performance of ECI for the different 
workload mixes. The figure shows that ECI improves 
performance by more than 7% for four out of the 12 
workloads. The four workloads correspond to the same 
workloads that benefit from TLHs, i.e. workloads where a 
CCF application is concurrently executing with LLCT or 

 

 

 
 

 

Figure 5: Performance of Temporal Locality Hints (TLHs). 
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Figure 6: Performance of Early Core Invalidation (ECI). 

LLCF applications. On average, ECI bridges 55% of the gap 
between inclusive and non-inclusive caches. To illustrate this, 
Figure 6 also presents the s-curve for ECI for all 105 
workloads. Across all workloads, ECI provides up to 30% 
improvement in performance with the worst case outlier 
losing only 1.6% performance. Unlike TLHs, ECIs are 
initiated from the LLC to derive the temporal locality of lines. 
The additional back-invalidate requests required by ECI on 
average is less than 50% (in the worst case it doubles). While 
the increase in back-invalidates might seem significant, the 
extra messages introduced by ECI are relative to the number 
of LLC misses. On average, our studies show an LLC miss 
rate of 5 misses per 1000 cycles. ECI increases the number of 
back-invalidates from 5 transactions per 1000 cycles to 7 
transactions per 1000 cycles. Since the number of transactions 
is small to begin with, the increase in back-invalidate requests 
from the LLC is negligible and can easily be sustained by the 
cores. As our studies show, the increase in back snoop traffic 
from the LLC to the cores does not impact performance. The 
first order benefit of ECI is from avoiding misses to main 
memory (Cache misses are discussed in Section D). 

C. Query Based Selection 

Figure 7 shows the performance of QBS when applied to 
different caches in the hierarchy. QBS-IL1 and QBS-DL1 
ensure that cache lines resident in the IL1 or DL1 caches are 
not evicted by the LLC. QBS-L1 ensures that cache lines that 
are resident in any L1 cache are not evicted by the LLC. QBS- 

 

L2 ensures that cache lines resident only in the L2 are not 
evicted by the LLC. Finally, QBS-L1-L2 ensures that cache 
lines resident in any cache in the hierarchy are not evicted by 
the LLC. The figure shows that QBS-IL1 consistently 
performs better than QBS-DL1. Since instruction cache 
misses stall the front-end of the pipeline from supplying 
instructions to the back-end, on average, it is more important 
to retain code lines in the LLC until their temporal locality is 
exhausted in the instruction cache. On average, QBS-IL1 
improves performance by 2.7% and QBS-DL1 improves 
performance by 1.6%. QBS-L1 is additive of QBS-IL1 and 
QBS-DL1 and improves performance by 4.5%. Figure 7 also 
shows that QBS-L1 consistently performs better than QBS- 
L2—QBS-L2 improves performance on average by 1.2%. 
Again, this is because the L1 caches filter out the temporal 
locality from the L2 caches. Finally, Figure 7 shows that QBS- 
L1-L2 outperforms non-inclusion on average. To illustrate 
this, Figure 7 also presents the s-curve for QBS for all 105 
workloads. On average, QBS improves performance by 6.5% 
while non-inclusion improves performance by 6.1%. 

We also evaluated versions of QBS that limit the number 
of queries that the LLC can make before selecting a victim. 
We evaluated query limits of 1, 2, 4, and 8 for QBS and 
observed 6.2%, 6.5%, 6.6% and 6.6% performance 
improvements respectively. The baseline inclusive cache 
hierarchy can be thought of having 0 queries. Performance 
does not significantly improve beyond two queries because 
the total capacity of the on-chip caches is equal to the capacity 

 

 
 

Figure 7: Performance of Query Based Selection (QBS). 
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Figure 8: Cache Performance Relative to Inclusion. 

of two ways of the LLC. On average, sending only one query 
is sufficient to achieve the bulk of the performance benefits. 
When QBS only sends one query, like ECI, our studies 
showed a 50% increase in back-invalidate requests from the 
LLC to the core caches. As we discussed for ECI, the 50% 
increase in back-invalidate requests is negligible because the 
traffic is small to begin with and the increase in back- 
invalidate requests from the LLC to the cores can be easily 
sustained. Our studies show that the increase in traffic from 
the LLC to the cores does not impact performance. Like ECI, 
the first order benefit of QBS is from avoiding LLC misses. 

D. Effect of TLA Mechanisms on Cache Misses 

Since inclusion victims require re-fetching ―hot‖ lines from 
memory, we use LLC miss reduction as the metric to measure 
the goodness of the proposed TLA policies. While reduction 
in L1 cache misses can also be compared, they are not 
applicable to ECI or L2 TLH because they both evict lines 
from the L1 cache. However, they both avoid requests to 
memory by preserving ―hot‖ lines in the LLC. Thus, we 
present reduction in LLC misses since this metric is applicable 
to all the TLA policies. We verified that the TLA proposals 

 
 

misses by 8.2%, L2 TLH by 4.8%, ECI by 6.5%, QBS by 
9.6%, non-inclusive caches by 9.3%, and exclusive caches by 
18.2%. On average, QBS performs better than ECI because 
QBS eliminates the time window problem associated with 
ECI by updating the replacement state instantly instead of 
waiting for the line to be rescued by the core

6
. This allows 

QBS to perform similar to non-inclusive caches without the 
complexity of non-inclusion. Figure 8 also presents an s-curve 
that compares reduction in cache misses across all 105 
workload mixes for QBS. Like non-inclusion, QBS reduces 
cache misses by as much as 80%. These results again 
emphasize that non-inclusive caches primarily address 
inclusion victims and not extra capacity. Only exclusive 
caches take advantage of the extra cache capacity. 

E. Summary of All TLA Policies 

Figure 9a summarizes the performance of the TLA 
mechanisms proposed in this paper compared to the baseline 
inclusive cache. The figure shows that QBS performs similar 
to a non-inclusive cache hierarchy. To ensure that the 
performance benefits of the TLA mechanisms are only from 
reducing inclusion victims, we also evaluated the performance 

reduce L1 cache misses where applicable.    
Figure 8 presents the reduction in LLC misses for the 

different TLA policies, non-inclusive cache, and exclusive 
cache when compared to the baseline inclusive cache. The bar 
labeled All represents the average reduction in LLC misses for 
all 105 workload mixes. On average, L1 TLH reduces LLC 

6. A version of QBS that back-invalidates lines from the core caches but 
updates the LLC replacement was also evaluated. This modified QBS 
version is similar to ECI in that lines are evicted from the core caches. 
We find that the modified QBS policy performs similar to the proposed 
QBS mechanism. This implies that the bulk of QBS benefits are from 
avoiding memory latency (not LLC hit penalty). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9: Performance of TLA Cache Management Policies In the Presence and Absence of Inclusion. 
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Figure 10: Scalability of TLA Policies to Different Cache Ratios. 

impact of these mechanisms on a non-inclusive cache (where 
inclusion victims do not exist). If there were some other 
benefits besides reducing inclusion victims, we would expect 
benefits from TLA mechanisms on a non-inclusive cache. 
Figure 9b summarizes the performance of the TLA 
mechanisms normalized to the performance of a non-inclusive 
LLC. The results show that TLA cache management policies 
improve the performance of a non-inclusive cache by only 
0.4–1.2%. These results show that the TLA mechanisms 
provide insignificant improvement in performance for a non- 
inclusive cache. However, they significantly improve 
inclusive cache performance. Thus, we conclude that the first 
order benefits of a non-inclusive cache are primarily from 
avoiding inclusion victims. Finally, the figure shows that on 
average, an exclusive cache hierarchy has 2.5% better 
performance than a non-inclusive cache hierarchy. This shows 
that eliminating inclusion victims can significantly bridge the 
performance gap between inclusive and exclusive cache 
hierarchies. Once inclusion victims are eliminated, the 
remaining gap between inclusive and exclusive caches is 
primarily due to the extra capacity in the hierarchy. 

F. Scalability to Different Cache Ratios 

Figure 10 presents the scalability of the proposed TLA 
mechanisms for different core cache to LLC ratios. The figure 
shows the performance of the TLA mechanisms for a 1MB, 
2MB, 4MB, and 8MB LLC. The L2 to LLC ratios for these 
cache sizes are 1:2, 1:4, 1:8, and 1:16. In general, reducing the 
LLC size while keeping the core caches constant requires 
better LLC management. When the LLC is not significantly 
larger than the core caches, exclusive or non-inclusive caches 
significantly improve performance compared to the baseline 
inclusive caches. Both TLH-L1 and QBS significantly bridge 
the gap between inclusive and non-inclusive caches. We find 
that TLH-L1 does not perform as well as QBS for the 1:2 ratio 
because ―hot‖ lines serviced by the L2 cache were suffering 
from inclusion victims. We found that TLH-L1-L2 performs 
similar to QBS for this configuration. Unlike TLHs (which are 
impractical due to the required amount of bandwidth), we find 
that a low bandwidth solution such as QBS matches non- 
inclusive cache performance for the different cache ratios. 

G. Scalability to Different Number of Cores 

Figure 11 presents the performance of QBS when the total 
number of cores in the CMP are increased. We created 100 4- 

Figure 11: QBS Performance with Increasing Core Count. 

core and 8-core workload mixes and evaluated QBS 
performance on a CMP where the ratio of the core cache to 
LLC is maintained at 1:4. The 4-core CMP has a 4MB LLC 
while the 8-core CMP has an 8MB LLC. The results show that 
QBS improves performance of a 4-core CMP with an 
inclusive cache by 8.1% on average. Non-inclusive and 
exclusive cache hierarchies for the 4-core CMP improve 
performance by 8.3% and 11.4% respectively. Similarly, for 
an 8-core CMP, QBS improves average performance by 9.5% 
while non-inclusive and exclusive LLCs improve 
performance by 10.1% and 13.6% respectively. These results 
show that QBS scales with increasing number of cores and 
consistently bridges more than 95% of the performance gap 
between inclusive and non-inclusive cache hierarchies. 

H. Hardware Overhead 

The proposed TLA policies require very little hardware 
overhead. They all use existing data paths in the system to 
allow the LLC to become aware of the temporal locality of 
lines in the core caches. TLH requires a new message class 
that does not return data but merely updates the LLC 
replacement state. Since TLH is not scalable due to large 
bandwidth requirements, TLHs are not a practical solution— 
especially since ECI and QBS serve as alternative low 
bandwidth solutions. ECI requires additional logic to pre- 
select the next victim in the cache and invalidate it from the 
core caches. Similarly, QBS uses the existing data path to 
determine whether or not a cache line can be evicted from the 
LLC. The additional logic required is a state-machine to send 
queries to the core caches and responses to the LLC. As the 
number of HW-threads on-chip continue to increase, both 
QBS and ECI are scalable solutions that are effective for any 
inclusive cache hierarchy organization. 

VI. RELATED WORK 

Managing multi-level cache hierarchies has been an important 
research area for several decades [26, 24, 11, 17, 18]. Baer et 
al first introduced the concept of multi-level inclusive cache 
hierarchies for simplifying cache coherence [6]. Jouppi et al 
proposed exclusive caches to reduce LLC conflict misses and 
to also increase the effective cache capacity of the hierarchy 
by not replicating lines in the LLC. Exclusive caches perform 
best when the sum of the core caches is not significantly larger 
than the size of the LLC [7, 1]. Non-inclusive cache 
hierarchies have been proposed in the context of aggressive 
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prefetching [10, 28] and in the context of better cache 
management policies [28, 12]. 

Zahran [27, 28] proposed the use of global replacement to 
improve the performance of inclusion. The proposed 
replacement policies were only evaluated for single-threaded 
workloads running in isolation. The results showed that while 
global replacement reduced the number of inclusion victims, 
the observed performance benefits were negligible. Our 
studies replicated their results for single-threaded workloads, 
however, our results indicate that global temporal locality 
indeed benefits CMPs. Garde et al [13] followed up on 
Zahran‘s work and deconstructed global replacement for 
single-core and multi-core processors. They evaluated the 
potential for global replacement in inclusive caches by 
analyzing the miss stream of a non-inclusive LLC. 
Specifically, for their non-inclusive LLC, they measured the 
number of times an LLC victim was resident in the core 
caches upon eviction (i.e. a potential inclusion victim). The 
problem with there approach is that the potential inclusion 
victim occurs only once for a ―hot‖ line because such a ―hot‖ 
line continues to receive hits in the core caches and is never 
re-filled in the LLC. The potential for global replacement 
should have been measured in the presence of an inclusive 
cache hierarchy. 

Fletcher et al [12] observed inclusion victims in the 
context of direct mapped network caches and proposed three 
solutions to address the problem. The proposed solutions 
include increasing the cache associativity, a victim cache [18], 
or making the LLC non-inclusive and using a snoop filter 
(called a tag cache in the paper) to ease cache coherence. 
They showed that increasing the network cache associativity 
and victim caches reduce the negative effects of inclusion 
victims. The proposed mechanisms require additional 
hardware structures (e.g. victim cache and snoop filter). Our 
work differs from the work of Fletcher et al in that we do not 
require any additional hardware structures. The Early Core 
Invalidation (ECI) proposal effectively uses an in-LLC victim 
cache instead of an external victim cache. For our baseline 
system, we compared the performance of both ECI and QBS 
to an inclusive LLC backed by a 32-entry victim cache. We 
found that the 32-entry victim cache improves average 
performance by only 0.8% while ECI and QBS improves 
average performance by 4.5% and 6.5% respectively. 

There has also been extensive research on managing 
shared caches in CMPs [14, 15, 25]. Most of the prior research 
work focuses on how to efficiently partition the shared last- 
level cache of a CMP. When multiple applications compete for 
the shared LLC, the proposed policies dynamically provide 
more cache to applications that benefit from the LLC and less 
to applications that do not. However, the proposed policies 
only target cache partitioning and do not address the problem 
of inclusion victims. We compared the TLA policies in the 
presence of intelligent cache management policies [14, 15] 
and find that we achieve similar performance improvements. 

VII. SUMMARY 

Inclusive caches are desirable because they simplify cache 
coherence. However, inclusive caches limit performance due 
to inclusion victims. In contrast, non-inclusive caches 

eliminate inclusion victims but come at the expense of 
increasing coherence complexity. This paper improves 
inclusive cache performance by making these contributions: 

1. We show that a better managed inclusive cache provides 
equal or better performance than a non-inclusive cache. 
Specifically, we show that the bulk of non-inclusive (and 
exclusive) cache performance over inclusive caches is 
due to avoiding inclusion victims and not the extra 
caching capacity in the hierarchy. Inclusion victims occur 
because an inclusive LLC is unaware of the temporal 
locality of ―hot‖ lines in the core caches. 

2. We propose Temporal Locality Hints (TLH) as a 
mechanism to convey the temporal locality of lines 
referenced in the core caches to the LLC. We show that 
TLHs sent by the L1 cache significantly reduce the 
number of inclusion victims. TLHs, however,  
significantly increase on-chip bandwidth. 

3. We propose Early Core Invalidation (ECI) as a low 
bandwidth technique used by the LLC to derive a line‘s 
temporal locality. Unlike TLHs, ECI is only triggered on 
LLC misses. ECI selects the next potential LLC victim 
and invalidates that line from the core caches while 
retaining it in the LLC. ECI employs the heuristic that if 
the next potential LLC victim line is ―hot‖, it will be 
serviced by the LLC (instead of the core caches) on the 
subsequent access causing an LLC replacement state 
update. However, ECI limits performance when the 
subsequent access occurs after a miss (to the same set). 

4. We propose Query Based Selection (QBS) as an 
alternative to ECI. QBS employs the heuristic that the 
core caches are best suited to inform the LLC on the 
temporal locality of a line. In the paper, we show that 
lines resident in the core caches have high temporal 
locality and should not be evicted from the LLC. In 
doing so, QBS allows inclusive caches to approach the 
performance of non-inclusive caches. 

For our baseline 2-core CMP, we show that TLHs issued from 
the L1 cache bridge 85% of the gap between inclusive and 
non-inclusive caches. ECI bridges 55% of the gap and QBS 
performs similar to non-inclusive caches. Our studies show 
that when non-inclusion must be enforced due to target core 
cache to LLC size ratios, (e.g. 1:2 or 1:4), the QBS technique 
allows chip designers to maintain the coherence benefits of 
inclusion while performing similar to a non-inclusive cache. 
This is especially important since chip designers today are 
willing to sacrifice coherence benefits for the performance 
improvement of non-inclusive LLCs [1]. Using QBS, we 
report 10-33% performance improvement for 25 of the 105 
workloads on 2, 4 and 8 core systems with a 1:4 hierarchy and 
16% performance improvement on systems with a 1:2 
hierarchy. As the number of cores sharing an LLC increases, 
cache contention increases and addressing inclusion victims 
becomes a growing concern. ECI and QBS are scalable and 
perform better with increasing core counts. Both introduce 
extra messages into the system that do not require significant 
additional bandwidth or additional hardware structures. 
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