
International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

141

Temporal Locality Aware (TLA) Cache Management Policies:
Achieving Non-Inclusive Cache Performance with Inclusive Caches

Dr K Venkataramana *, Ms.Banashree Dash
1
*Assosiate Professor,Dept. Of Computer Science and Engineering, NIT , BBSR
2
Assistant Professor,Dept. Of Computer Science and Engineering, NIT , BBSR

k.venkata@thenalanda.com*, banashree@thenalanda.com

Abstract— Processors frequently employ inclusive caches to

make cache coherence simpler. Lower performance in

comparison to exclusive and non-inclusive caches has been the
trade-off, though. Contrary to popular belief, we demonstrate
that the poor performance of inclusive caches is mostly caused

by inclusion victims, or lines that must be removed from the
hierarchy's core caches in order to meet the inclusion feature.
The last-level cache (LLC) is blind to the temporal locality of

lines in the core caches, hence it chooses these inclusion victims
for replacement wrongly. To enable an inclusive LLC to be

aware of the temporal locality of lines in the core caches, we
propose Temporal Locality Aware (TLA) cache management
policies.To enable an inclusive LLC to be aware of the

temporal locality of lines in the core caches, we propose
Temporal Locality Aware (TLA) cache management policies.
Temporal Locality Hints (TLH), Early Core Invalidation

(ECI), and Query Based Selection are the three TLA policies
that we recommend (QBS). All three policies enhance the
performance of the inclusive cache without adding any new

hardware structures. In actuality, QBS functions in a manner
akin to a non-inclusive cache hierarchy.

Keywords–inclusion; non-inclusion; exclusion; replacement

I. INTRODUCTION

As CMPs become widespread and the gap between processor
and memory speeds continues to widen, it is imperative that
processor architects design an efficient and high performing
cache hierarchy. One of the key design choices for a multi-
level cache hierarchy is whether or not to enforce inclusion [6,
27, 17]. While inclusion greatly simplifies the cache
coherence protocol [9, 6], it limits performance when the size
of the largest cache is not significantly larger than the sum of
the smaller caches. In such scenarios, CPU architects resort to
non-inclusive [27] or exclusive [17] cache hierarchies. This
paper focuses on improving inclusive cache performance
without sacrificing its benefits.

The inclusion property requires that the contents of all the
smaller caches of a multi-level cache hierarchy be a subset of
the last-level cache (LLC) [6]. When a line is evicted from the
LLC, inclusion is enforced by removing that line from all the
caches in the hierarchy. We refer to cache lines invalidated in
the small caches as a result of inclusion as inclusion victims.
The small caches, from here on referred to as core caches,
hide the temporal locality from the LLC when they service
requests. Since replacement state is only updated to Most
Recently Used (MRU) on cache hits, the LLC replacement
state of ―hot‖ lines constantly serviced by the core caches
decays to least recently used (LRU) in the LLC. As a result,

the ―hot‖ lines become candidates for eviction in the LLC. The
number of inclusion victims dramatically increases when

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

142

multiple applications compete for the LLC or when the
LLC is not significantly larger than the sum of all the
core caches.

A straight forward mechanism to eliminate
inclusion victims would be to remove the requirement
that core caches be a subset of the LLC. Such a cache,
known as a non- inclusive cache [10], allows cache
lines to reside in the core cache(s) without also being
duplicated in the LLC. In doing so, non-inclusion
increases the effective capacity of the cache hierarchy
[27, 29]. Unfortunately, non-inclusion eliminates the
natural snoop filter benefit that an inclusive LLC
provides, thus breaking the coherence benefits that
come with inclusivity [6]. While snoop filters [5, 22,
23] can be used in addition to the LLC, such structures
increase the hardware overhead [29] and verification
complexity [9]. It would be ideal to design a cache
hierarchy that reduces (if not eliminates) the frequency
of inclusion victims while providing the coherence
benefits of inclusion. Thus, our goal is to bridge the
performance gap between inclusion and non-inclusion
by improving the management of an inclusive LLC.

It is a widely held belief that the primary benefits of a non-
inclusive cache hierarchy come from the increase in
the effective caching capacity [1, 27, 29]. However, we
show that the first order benefit of non-inclusion is the
elimination of inclusion victims and not the extra
cache capacity. In light of this observation, we
illustrate that inclusive hierarchies can perform similar
to non-inclusive hierarchies by preserving hot lines in
the core caches and extending the life time of these
lines in the LLC. We propose Temporal Locality Aware
(TLA) inclusive cache management policies to reduce
the frequency of harmful inclusion victims. The
success of TLA policies requires identifying lines that
have high temporal locality in the core caches and
preventing LLC replacement of these lines until their
temporal locality is exhausted in the core caches. We
propose three TLA cache management policies where
the identity of hot lines is either conveyed to, derived
by or inferred by the LLC.

• Temporal Locality Hints (TLH) convey the
temporal locality of ―hot‖ lines in the core caches
by sending hints to the LLC to update its
replacement state. With the same temporal
information as the core caches, the LLC is
significantly less likely to choose a victim that will
cause an inclusion victim.

• Early Core Invalidation (ECI) derives the
temporal locality of a line before it becomes LRU
in the LLC. The LLC chooses a line early and
invalidates that line in the core caches, while
leaving the line in the LLC. By observing the
core‘s subsequent request, the LLC derives the
temporal locality.

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

143

Figure 1: Summary of Cache Hierarchies.

• Query Based Selection (QBS) infers the temporal
locality of a line in the LLC by querying the core caches.
The LLC selects a line for replacement and queries the
core caches for approval. The LLC uses the information
provided by the core caches to infer the temporal locality
and select a victim. QBS employs the heuristic that the
core has better information about temporal locality, and it
is best suited to propose which lines can be evicted.

Our evaluations on 2-core, 4-core, and 8-core CMPs show that
the three TLA cache management proposals improve
inclusive cache performance with QBS performing similar to
a non-inclusive cache. We also show that the proposed
policies do not require any additional hardware structures and
only require extra messages in the system.

The organization of the paper is as follows: Section II
provides a more in depth motivation for the work; Section III
introduces TLA cache management; Section IV describes our
experimental methodology, followed by our experimental
results in Section V. Section VI discusses related work and we
summarize in Section VII.

II. MOTIVATION

Figure 1 illustrates the different types of cache hierarchies. An
inclusive cache hierarchy requires that the contents of the
smaller cache levels be a subset of the LLC. When a line is
evicted from the LLC, inclusion is enforced by back-
invalidating (i.e., removing) that line from the smaller cache
levels (if present). The capacity of an inclusive cache
hierarchy is equal to the size of the LLC. Inclusive caches are
beneficial because they serve as a natural snoop filter. When
an LLC lookup results in a miss, no snoops need to be sent to
the core caches because they are guaranteed to not be present
in the core caches. A non-inclusive cache hierarchy, on the
other hand, does not guarantee that the smaller cache levels be
a subset of the LLC. As such, the capacity of a non-inclusive
cache hierarchy ranges between the size of the LLC and the
sum of all levels in the cache hierarchy. Finally, an exclusive
cache hierarchy requires that the contents of any cache level
are not replicated in any other cache level. Exclusive
hierarchies first fill cache lines at the smallest level in the
hierarchy and fill them into subsequent larger cache levels
upon eviction from the smaller cache levels. Exclusive caches
require higher bandwidth since even clean victims from the
core caches have to be written to the LLC. The capacity of an
exclusive cache hierarchy is equal to the sum of the sizes of all

the caches in the hierarchy. Unfortunately, non-inclusive and
exclusive caches increase the capacity of a hierarchy by
sacrificing the natural snoop filter benefits of inclusive caches.

In general, the choice of cache hierarchy is dependent on
the ratio of the size of small caches (i.e., core caches) to the
LLC. Figure 2 compares the performance of non-inclusive and
exclusive LLCs to an inclusive LLC for various core cache to

LLC size ratios. The figure shows that inclusive caches
typically perform worse than non-inclusive and exclusive
caches. When the LLC size is more than 8X larger than the
core caches, the performance of non-inclusive and exclusive
LLCs are similar to an inclusive LLC. However, when the
LLC shrinks, both non-inclusive and exclusive LLCs perform
significantly better than inclusive LLCs.

Modern day Intel microprocessors (like the Intel Core i7
processor) have a 1:8 cache ratio and implement inclusive
LLCs [4] while AMD microprocessors (like the Phenom II
processor) have a 1:4 cache ratio and implement non-inclusive
LLCs [1]. The figure shows that inclusive LLCs with 1:8 ratio
have an average of 3% (max 12%) worse performance than
non-inclusive/exclusive LLCs. Similarly, inclusive LLCs with
a 1:4 ratio have an average of 8% (up to 33%) worse
performance than non-inclusive/exclusive LLCs. For such
cache ratios, it is better not to enforce inclusion. Both non-
inclusive/exclusive LLCs improve performance over inclusive
LLCs by eliminating inclusion victims and increasing the
effective caching capacity of the hierarchy. Since we cannot
change the requirement that inclusion duplicate lines in the

Figure 2: Performance of Non-Inclusive and Exclusive LLCs.

Core Request Core Request Core Request

evict victim

LLC LLC LLC
fill

victim victim victim

Memory Memory Memory

(a) Inclusive Hierarchy (b) Non-Inclusive Hierarchy (c) Exclusive Hierarchy

L1 L1 L1

1.30

1.25

1.20

1.15

1.10

1.05

1.00

1 : 2 1 : 4 1 : 8 1 : 16

Ratio of Core Cache Size to LLC Size

Non-Inclusive LLC
Exclusive LLC

M
is

s
 F

lo
w

F
ill

 F
lo

w

b
a
c
k
-i
n
v
a
lid

a
te

M
is

s
 F

lo
w

F
ill

 F
lo

w

P
er

fo
rm

an
ce

 R
el

at
iv

e
to

 I
n

cl
u

si
o
n

M
is

s
 F

lo
w

F
ill

 F
lo

w

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

144

Next
Ref

(a) Baseline Inclusive Cache (b) Temporal Locality Hints (TLH) (c) Early Core Invalidation (ECI) (d) Query Based Selection (QBS)

a

(t = 0)

d

(t = 1)

a

(t = 2)

e

(t = 3)

a

(t = 4)

c a

c b a I

L1: Hit! L2: -

a c

c b a I

L1: replace ‗c‘ - L2: replace ‗I‘

d a

d c b a

L1: Hit! L2: -

a d

d c b a

L1: replace ‗d‘ - L2: replace ‗a‘

e d

e d c b

L1: replace ‗d‘ - L2: replace ‗b‘

c a

c a b I

L1: Hit! L2: LRU update ‗a‘

a c

a c b I

L1: replace ‗c‘ - L2: replace ‗I‘

d a

d a c b

L1: Hit! L2: LRU update ‗a‘

a d

a d c b

L1: replace ‗d‘ - L2: replace ‗b‘

e a

e a d c

L1: Hit! L2: LRU update ‗a‘

c a

c b a I

L1: Hit! L2: -

a c

c b a I

L1: replace ‗c‘ - L2: replace ‗I‘
L2: ECI ‗a‘

d I

d c b a

L1: replace ‗I‘ - L2: Hit!

a d

a d c b

L1: replace ‗d‘ - L2: replace ‗b‘

L2: ECI ‗c‘

e a

e a d c

L1: Hit! L2: -

c a

c b a I

L1: Hit! L2: -

a c

c b a I

L1: replace ‗c‘ - L2: replace ‗I‘

d a

d c b a

L1: Hit! L2: -

a d

d c b a

L1: replace ‗d‘ - L2: replace ‗b‘

move ‗a‘ to MRU

e a

e a d c

L1: Hit! L2: -

Figure 3: Illustration of Temporal Locality Aware Cache Management Policies.

LLC, we focus on eliminating inclusion victims to improve
inclusive cache performance.

Inclusion victims manifest on CMPs whenever
applications with working set sizes that fit in the core caches
concurrently execute with applications that have working set
sizes that are greater than or equal to the size of the LLC. In
such situations, the core caches hide all the temporal locality
of the core cache fitting (CCF) applications from the LLC.
Consequently, the LLC replacement state of cache lines
belonging to the CCF applications decay towards LRU when
LLC fitting (LLCF) or LLC thrashing (LLCT) applications
exercise the LLC. As a result, the CCF applications suffer
from inclusion victims even though they have high temporal
locality in the core caches.

The problem of inclusion victims is not intrinsic to CMPs
alone. It can also manifest in a single-core, single-threaded
system where non-unified instruction and data caches share a
unified LLC. For example, a streaming application whose
instruction working set fits in its instruction cache can suffer
from inclusion victims when references to non-temporal data
evict the instruction working set from the LLC. Maintaining
inclusion and avoiding inclusion victims for code lines is
applicable for architectures that require code lines to be
coherent due to self-modifying code (e.g. x86). Inclusive
cache performance can be improved if the LLC knew of the
temporal locality of lines in the core caches. To address this
problem, the next section proposes Temporal Locality Aware
cache management policies for LLCs.

III. TEMPORAL LOCALITY AWARE (TLA) MANAGEMENT

In a multi-level hierarchy, the core caches act as a filter and
hide the temporal locality from the LLC. Thus, the LLC only
observes the references that miss in all levels prior to the LLC.
For lines that have high temporal locality in the core caches,
the replacement state of the line in the LLC can decay to LRU.
The line eventually gets evicted from the LLC and due to the
inclusive hierarchy, the line is also evicted from the core
caches (an inclusion victim). To illustrate this problem,
consider the following unfiltered cache reference pattern:

. . . a, b, a, c, a, d, a, e, a, f, a,

Note that the references to 'a' have high temporal locality.
Figure 3 illustrates a two-level inclusive cache hierarchy with
a fully associative 2-entry L1 cache and a fully-associative 4-
entry LLC. Both the L1 and LLC start with all entries invalid.
The boxes and arrows represent the LRU chain, with the
MRU line on the left and LRU line on the very right. The
figure starts after the reference to ‗c‘.

Figure 3a illustrates the behavior of an inclusive cache
hierarchy. The figure shows that in L1 'c' is the MRU entry
and 'a' is the LRU entry. In the LLC, 'c' is the MRU entry, and
the LRU entry is an invalid line, ‗I‘. The next reference to 'a'
hits in the L1 cache and updates 'a' to the MRU position. Since
'a' hits in the L1 cache, only the L1 replacement state is
updated and the LLC replacement state stays unchanged. The
next reference, 'd', misses in the hierarchy and replaces lines 'c'
and 'I' in the L1 and LLC respectively. Line 'a' is now the LRU
line in both the L1 and LLC.

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

145

L1 hit

(update LRU)
L1

Yes! No!

TLH

(update LRU)

LLC

c b a I

LLC

c b a I c

LLC

b

Evict it Update LLC LRU,

Choose next LLC

victim, repeat query

a I

(a) Temporal Locality Hints (TLH) (b) Early Core Invalidation (ECI) (c) Query Based Selection (QBS)

L1 L1

MRU Next LRU MRU Next LRU MRU Next LRU

 Victim Victim Victim

Figure 4: Temporal Locality Aware (TLA) Cache Management Policies.

The next reference to 'a' hits in the L1 cache. Again, 'a' is
moved to the MRU position of the L1 cache and no
replacement updates occur in the LLC. The next reference 'e'
misses in both the L1 and LLC. Since 'a' is now the LRU entry
in the LLC, it is chosen for eviction, even though it is the
MRU line in the L1 cache. Due to the enforcement of
inclusion, line 'a' is an inclusion victim and is removed from
the L1 cache leaving an invalid entry behind (not shown in the
figure). Line 'e' takes the place of 'a' in the LLC and the invalid
entry left behind by 'a' in the L1 cache. Line 'e' is promoted to
the MRU position in both the caches. The next reference, 'a',
misses in both the L1 and LLC. For the above reference
pattern, line 'a' misses to memory on every ninth reference to
the L1 cache, despite its high temporal locality. If the LLC
were non-inclusive or if the temporal locality of 'a' was not
hidden from the LLC by the L1, 'a' would never have been
back-invalidated and suffer a core cache miss.

Reducing the harmful effects of inclusion requires that
lines with high temporal locality in the core caches not be
chosen for eviction in the LLC until their temporal locality in
the core caches is exhausted. This implies that the LLC
replacement state should be made aware of the temporal
locality of lines in the core caches.

A. Temporal Locality Hints (TLH)

Inclusion victims can be eliminated by conveying the
temporal locality of lines in the core caches to the LLC. A
direct mechanism would be to inform the LLC of the
unfiltered temporal locality. On a hit in the core caches,
temporal locality information can be conveyed to the LLC by
issuing a Temporal Locality Hint (TLH) (see Figure 4). The
hint is a non-data request that updates the replacement state of
the line in the LLC. The heuristic used is that if a line is hot in
a core cache, it is worth preserving in the LLC.

We illustrate the use of TLHs in Figure 3b. At the L1
cache, the replacement behavior remains the same as the base
case. For every L1 cache hit, the line is moved to the MRU
position in the L1 cache and a TLH is sent to the LLC. The
LLC uses the hint to promote that line to the MRU position in
its LRU chain. Thus, in our example reference pattern, L1
cache hits on 'a' update the LRU state in both the L1 and LLC.
Thus, when the reference to 'e' occurs, 'a' is not in the LRU
position and is not evicted from the LLC. By conveying the
temporal locality of ‗a‘, TLHs prevent inclusion victims.

TLHs can significantly reduce the number of inclusion
victims because they keep the LLC replacement state up-to-

date with the core caches. However, the downside is that they
send a request to the LLC for every hit in the core caches.
Optimizations can be made by filtering the number of TLHs
sent from the core caches to the LLC. For example, in a multi-
level hierarchy, the second level cache can issue TLHs instead
of the first level cache. Alternatively, the L1 cache can issue
TLHs for non-MRU lines. However, even with filtering of
TLHs to the LLC, the number of requests to the LLC is
extremely large and does not scale well with increasing
number of cores. Thus, for the purpose of this study, we
evaluate the use of TLHs as a limit study to determine the
potential performance of avoiding inclusion victims
altogether. Instead of using TLHs, we propose alternative low
overhead solutions: Early Core Invalidation (ECI) and Query
Based Selection (QBS).

B. Early Core Invalidation (ECI)

Early Core Invalidation (ECI) is a method for deriving the
temporal locality of a line. The intent is to invalidate a line
from the core caches early (but retain the line in the LLC) and
observe a core's response to derive the line‘s temporal locality.
If the line is hot in a core cache, the core will re-request it. If
this request arrives before the line gets evicted from the LLC,
it will be a hit. As with all hits, the temporal locality at the
LLC causes a replacement state update. If a core does not re-
reference the line, or the re-reference takes too much time, the
line will be evicted by the next miss to that set.

Sending an ECI to the core caches is relatively straight
forward. As illustrated in Figure 4b, upon a miss in the LLC,
the standard victim flow happens normally—a victim is
selected and evicted from the LLC and core caches

1
 to make

room for the incoming line. ECI adds another step to the miss
path by selecting another victim (the next LRU line) and
sending an ECI to the core caches to have that line evicted.
The line still remains in the LLC

2
 though.

We illustrate the behavior of ECI in Figure 3c. Unlike
TLHs no update traffic to the LLC is required. When the
reference to 'd' misses in both the L1 and LLC, the miss at the
LLC is handled as usual by evicting the LRU line, ‗I‘. With
ECI, the next LRU line, 'a', is also evicted from the L1 cache
(it is still retained in the LLC). This results in 'd' being MRU
in L1 and LLC, and 'I' and 'a' being LRU in the L1 and LLC

1. Like the Core i7, a directory is maintained with each LLC line to
determine the cores to which a back-invalidate must be sent [3].

2. The directory bits of the LLC line are updated as usual.

V
ic

ti
m

 B
a

c
k
 I
n

v
a

lid
a

te

E
a

rl
y
 C

o
re

 I
n

v
a

lid
a

te

C
a
n

 L
L

C
 E

v
ic

t
T

h
is

 L
in

e
?

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

146

respectively. The next reference to 'a' (at t=3), misses in L1 but
hits in the LLC. This updates the replacement state of 'a' in the
LLC. By prematurely evicting line 'a' from the core caches and
then observing the subsequent request for ‗a‘, the LLC derived
that 'a' was hot, and captured the temporal locality of 'a'.

Note, however, that ECI is time sensitive. The core must
re-reference the line within a window of opportunity. For
instance, had a new line been referenced at t=3 before the re-
reference to ‗a‘, 'a' would have been evicted. A line has to be
hot relative to the time window, a time window that will vary
depending on the level of contention at the LLC.

With ECI, the number of lines that need to be invalidated
in the core caches on each LLC miss can be either one or two.
If an early invalidated line has not been re-referenced, it is not
in any core caches. Thus, when the next miss occurs, that line
is chosen as the victim, and because it is not in any core
caches, the back-invalidate request is not required. Only the
ECI needs to be sent out for the next LLC victim. In contrast,
if an early invalidated line is re-referenced by a core before
LLC eviction, its LLC replacement state is updated. Thus, the
next miss after such a hot line rescue will need to find a victim
to evict, which will incur a normal invalidate as required by
inclusion along with the ECI to derive the temporal locality of
the next potential victim. Note that ECI happens in the shadow
of the miss to memory, and thus is not time critical.

As compared to TLHs, ECI is a lower traffic solution to
derive a line‘s temporal locality. This is because the number of
TLHs is directly proportional to the number of core cache hits
(which is high) while ECI request traffic is directly
proportional to the number of LLC misses (which is orders of
magnitude smaller than the number of core cache hits). There
are trade-offs though. The early invalidate is a prediction that
the line will not be needed by the core caches. If the prediction
is incorrect, the scheme allows a time window (until the next
miss to that set) for the core caches to correct the prediction by
re-requesting the line. If the core re-requests the line in that
time window, then the downside is that what would've been a
hit in the core caches has become a hit in the LLC. The added
latency of getting the data from the LLC instead of the core
caches is traded against extending the line's lifetime in the
LLC. The more significant downside is when the re-request
for the line misses the time window. The consequence is an
LLC miss that must be serviced from main memory. The time
window for a core to re-reference an early invalidated line
restricts the ability of the LLC to fully derive the temporal
locality, and thus limits the potential benefits of ECI.

C. Query Based Selection (QBS)

To address the drawbacks of ECI, we propose Query Based
Selection (QBS). Like ECI, QBS is also initiated from the
LLC. Instead of invalidating a line early and having the cores
re-request it, QBS avoids invalidating lines in the core caches
altogether. QBS queries the core caches and has them indicate

core caches to determine if the line can be evicted from the
LLC. If the line is not present in any of the core caches, QBS
evicts this line to make space for the incoming line. However,
if the current victim line is present in any of the core caches,
QBS updates the line's LLC replacement state to MRU and
extend its lifetime in the LLC. Since a victim still needs to be
selected, a new victim is chosen and the process repeats. The
QBS victim selection process is typically hidden by memory
latency. Should the data arrive from memory before QBS
selects a victim, the cache controller can either wait for QBS
to finish selecting a victim or force QBS to select the next

victim. Alternatively, the cache controller can limit the
number of queries issued on an LLC miss. When the

maximum is reached, the next victim line is selected for
replacement and no further queries are sent to the core caches.

We illustrate the behavior of QBS in Figure 3d. When the
reference to 'e' misses in the LLC, QBS queries the core
caches to determine whether it can evict the first potential
LLC victim, 'a'. When the core caches are queried for 'a', the

core responds that the line is present in the L1 cache.
Consequently, the LLC replacement state of ‗a‘ is updated to
MRU and a query for the next victim, 'b', is sent. Since ‗b‘ is
not resident in the L1 cache, the core allows 'b' to be replaced
from the LLC. Thus, when 'a' is re-referenced, it hits in the L1
cache. QBS has prevented 'a' from being an inclusion victim.

By preventing the LLC from evicting lines that are still
resident in the core caches, QBS prevents ―hot lines‖ from
becoming inclusion victims. QBS addresses the time window
problem of ECI and avoids LLC misses.

IV. EXPERIMENTAL METHODOLOGY

A. Simulator

We use CMP$im [16], a Pin [19] based trace-driven x86
simulator for our performance studies. Our baseline system is
a 2-core CMP. Each core in the CMP is a 4-way out-of-order
processor with a 128-entry reorder buffer and a three level
cache hierarchy. Without loss of generality, we assume a
single-thread per core. The L1 and L2 caches are private to
each core. The L1 instruction and data caches are 4-way 32KB
each while the L2 cache is unified 8-way 256KB. The L1 and
L2 cache sizes are kept constant in our study. We support two
L1 read ports and one L1 write port on the data cache. The
baseline last-level cache (LLC) is a unified 16-way 2MB
cache that is shared by both the cores in the CMP. We assume
a banked LLC with as many banks as there are cores in the
system. Like the Intel Core i7, we model a non-inclusive L2
cache and only the last-level cache enforces inclusion

3
. All

caches in the hierarchy use a 64B line size. For replacement
decisions, the L1 and L2 caches use the LRU replacement
policy while the LLC uses the Not Recently Used (NRU)
replacement policy

4
 [2, 14]. We model a stream prefetcher

that trains on L2 cache misses and prefetches lines into the L2
cache. The prefetcher has 16 stream detectors. The load-to-use

if a line is resident in the core caches and uses that information
to infer the temporal locality of those lines. Lines resident in

the core caches are inferred to have high temporal locality and
are not evicted from the LLC.

As illustrated in Figure 4c, on an LLC miss, the cache
controller selects the LRU line as the victim and queries the

3. Modern processors [1, 2, 3] use non-inclusive L2 caches. If the L2 were
inclusive, TLA policies can be applied at the L2 cache to perform
similar to non-inclusive caches. We verified this in our studies.

4. The inclusion problem is independent of the LLC replacement policy.
The problem occurs with LRU replacement as well as more intelligent
replacement policies (e.g. RRIP [14]). We verified this in our studies.

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

147

TABLE I. MPKI of Representative SPEC CPU2006 Applications In the Absence of Prefetching

 ast bzi cal dea gob h26 hmm lib mcf per pov sje sph wrf xal

L1 MPKI (64KB) 29.29 19.48 21.19 0.95 10.56 11.26 4.67 38.83 21.51 0.42 15.08 0.99 19.03 16.50 27.80

L2 MPKI (256KB) 17.02 17.44 14.06 0.22 7.91 1.57 2.76 38.83 20.43 0.20 0.18 0.37 16.20 15.18 3.38

LLC MPKI (2MB) 3.16 7.25 1.42 0.08 7.70 0.16 1.21 38.83 20.30 0.11 0.03 0.32 14.00 14.67 2.30

latencies for the L1, L2, and LLC are 1, 10, and 24 cycles
respectively. We model a 150 cycle penalty to main memory
and support 32 outstanding misses to memory. The cache
hierarchy organization and latencies are based on the Intel
Core i7 processor [3]. The proposed policies do not rely on the
specific latencies used. We have verified that the proposed
policies perform well for different latencies including pure
functional cache simulation. We compare the policies using
both the throughput

5
 and cache performance metrics.

We model an interconnect with a fixed average latency.
Bandwidth onto the interconnect is modeled using a fixed
number of MSHRs. Contention for the MSHRs models the
increase in latency due to additional traffic introduced into the
system. All transactions, including those for ECI and QBS,
use existing data paths and contend for the MSHRs. We do not
model bandwidth limitations for the Temporal Locality Hints
(TLH). TLHs serve as a limit study on potential performance
improvement if temporal locality information from all levels
in the hierarchy were available at the LLC.

We also compare the performance of the proposed TLA
policies to non-inclusive and exclusive cache hierarchies.
Cache latencies are identical to the baseline inclusive cache
hierarchy for both these cache hierarchies. A non-inclusive
cache hierarchy is modeled by not sending back-invalidates to
the core caches when replacing lines from the LLC. To model
an exclusive cache hierarchy we modify both the hit and miss
paths. Lines are invalidated in the LLC upon cache hits. As for
the miss path, new lines are inserted into the core caches first.
These lines are inserted into the LLC only after they are
evicted from the core caches. Exclusive caches typically
require higher LLC bandwidth because even clean victims
from the core caches must be inserted into the LLC. We do not
model this increased bandwidth, and thus our results for
exclusive caches are optimistic.

B. Benchmarks

The SPEC CPU2006 benchmarks were first grouped into
three different categories based on their L1, L2, and LLC
cache hit behavior. The first category is those applications
whose working set fits in the core caches. We refer to these
applications as core cache fitting (CCF) applications. The
second category is those applications whose working set fits in
the LLC. We refer to these applications as LLC fitting (LLCF)
applications. Finally, the third category is those applications
whose working set is larger than the LLC. We refer to these
applications as LLC thrashing (LLCT) applications. Of all the
SPEC CPU2006 benchmarks, we selected five from each

5. We compared the performance of the TLA policies on both the weighted
speedup and hmean-fairness metrics. Since the TLA policies do not
introduce any fairness issues, they perform similar to the throughput
metric for both weighted speedup and hmean-fairness metrics.

category to cover the spectrum of hit/miss behavior in the
different levels of the cache hierarchy. The 15 representative
SPEC CPU2006 benchmarks were compiled using the icc
compiler with full optimization flags. Representative regions
for the SPEC benchmarks were all collected using PinPoints
[20]. Table I lists the 15 SPEC CPU2006 benchmarks and
their misses per 1000 instructions (MPKI) in the L1, L2, and
LLC when run in isolation. The MPKI numbers are reported
in the absence of a prefetcher.

Based on the MPKI values in Table I, dealII, h264ref,
perlbench, povray, and sjeng all have small miss rates in the
L2 cache. This implies that these benchmarks have working
sets that fit into the core caches. Thus, for our baseline cache
hierarchy, we can classify these applications as CCF
applications. The benchmarks gobmk, libquantum, mcf,
sphinx3, and wrf all have working set sizes that are larger than
the baseline LLC size. This is because these applications have
almost as many misses as there are accesses to the LLC. Thus,
for our baseline cache hierarchy, these applications can be
classified as LLCT applications. Finally, the benchmarks
astar, bzip2, calculix, hmmer, and xalancbmk all have working
set sizes larger than the L2 cache but benefit from the LLC.
Thus, for our baseline cache hierarchy, we can classify these
applications as LLCF applications.

In general, CCF applications are vulnerable to inclusion
related evictions when concurrently executing with LLCT or
LLCF applications. To study the effects of inclusion, we ran
all possible two-threaded combinations of the 15 SPEC
benchmarks, i.e. 15 choose 2—105 workloads. To provide
insights on when TLA policies are beneficial, we selected 12
workload mixes (listed in Table II) to showcase results.
However, we provide results for all 105 workloads.

We simulated 250 million instructions for each
benchmark. Simulations continue to execute until all
benchmarks in the workload mix execute at least 250 million
instructions. If a faster thread finishes its 250M instructions, it
continues to execute to compete for cache resources. We only
collect statistics for the first 250 million instructions
committed by each application. This methodology is similar to
existing work on shared cache management [15, 21, 25].

TABLE II. Workload Mixes

Name Apps Category Name Apps Category

MIX_00 bzi, wrf LLCF, LLCT MIX_06 hmm, xal LLCF, LLCF

MIX_01 dea, pov CCF, CCF MIX_07 dea, wrf CCF, LLCT

MIX_02 cal, gob LLCF, LLCT MIX_08 bzi, sje LLCF, CCF

MIX_03 h26, per CCF, CCF MIX_09 pov, mcf CCF, LLCT

MIX_04 gob, mcf LLCT, LLCT MIX_10 lib, sje LLCT, CCF

MIX_05 h26, gob CCF, LLCT MIX_11 ast, pov LLCF, CCF

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

148

1.3

1.3

1.2 1.2

1.1
1.1

1

1

0 10 20 30 40 50 60 70 80 90 100

Workload ID

 TLH-L1

TLH-L2

Non-Inclusive LLC

V. RESULTS AND ANALYSIS

A. Temporal Locality Hints – A Limit Study

Figure 5 shows the throughput normalized to the baseline
inclusive cache hierarchy when all requests at different levels
in the hierarchy send TLHs. As a reminder, we do not model
any bandwidth constraints when sending TLHs to the LLC.
The first three bars in the figure show the performance when
the L1 instruction cache alone sends TLHs (TLH-IL1), the L1
data cache alone sends TLHs (TLH-DL1), and when both L1
instruction and data caches send TLHs (TLH-L1). The x-axis
represents the different workload mixes and the bar labeled All
represents the geomean of all 105 workloads used in the study.
TLH-IL1 and TLH-DL1 alone improve throughput by 5% or
more for the workload mixes MIX_08, MIX_09, MIX_10,
and MIX_11. For these workload mixes, the performance
improvements are additive when both the IL1 and DL1 caches
send TLHs (i.e., TLH-L1). This is because these workload
mixes are composed of a CCF application that is running
concurrently with an LLCT or LLCF application. Sending
TLHs from the core caches prevents LLCT and LLCF
applications from evicting the cache lines of CCF applications
from the LLC. This allows TLHs to improve the performance
of an inclusive cache by as much as 31%. The figure also
shows that homogeneous workload mixes of CCF applications
(MIX_01 and MIX_03) or workload mixes that have a
combination of LLCT and LLCF applications (workload
mixes MIX_00 and MIX_02) receive no benefits from TLHs.
For such mixes, inclusion victims are not a problem because
either all benchmarks have working sets that fit in the core
caches or all have working set sizes that are larger than the
core caches. On average, TLH-IL1, TLH-DL1, and TLH-L1
improve throughput by 2.6%, 2.5% and 5.2% respectively.

Figure 5 also presents the performance of TLHs when only
the L2 cache hits send a TLH to the LLC (TLH-L2). On
average, TLH-L2 has roughly two-thirds the performance of
TLH-L1. For example, MIX_10 observes only 7%
improvement in throughput with L2 generated TLHs
compared to 24% improvement from L1 generated TLHs.
MIX_10, consists of benchmarks libquantum and sjeng. From
Table I, we see that libquantum has no locality in any of the
caches while sjeng has good L1 cache locality. Thus, TLH-L2

is unable to refresh the LRU state of the lines belonging to
sjeng in the LLC.

Figure 5 also illustrates that the performance of TLH-L1
and TLH-L2 is not additive when both the L1 and L2 caches
send TLHs (TLH-L1-L2). In fact, TLH-L1 provides the bulk
of the performance improvements when all levels in the
hierarchy send TLHs. Figure 5 shows that TLH-L1 bridges
85% of the gap between inclusive and non-inclusive cache
hierarchies while TLH-L2 only bridges 45% of the gap
between inclusive and non-inclusive caches. Figure 5 also
shows the s-curve for the throughput improvement of TLH-
L1, TLH-L2, and a non-inclusive LLC for all 105 two-core
workload mixes. The s-curve is sorted based on non-inclusive
cache performance. In the figure, ‗x‘ represents TLH-L2 and
triangles represent TLH-L1. The figure shows that TLH-L1
closely tracks the performance of non-inclusion for the bulk of
the workloads. These results show that the performance of a
non-inclusive cache hierarchy can be achieved by allowing an
inclusive LLC to be aware of the global temporal locality of
lines that are resident in the LLC.

While TLH-L1 bridges the gap between inclusive and
non-inclusive caches, the number of LLC requests increase by
almost 600X. In comparison, TLH-L2 increases the number of
requests to the LLC by about 8X. We conducted a sensitivity
study on the fraction of hits that can send hints to the LLC.
When 1%, 2%, 10%, and 20% of core cache hits in the L1
cache generate TLHs, they bridge the gap between inclusive
and non-inclusive cache hierarchies by 50%, 60%, 75%, and
80% respectively. However, even when 1% of hits in the L1
cache send TLHs, the number of LLC requests still increases
by 6X or more. Thus, while TLH-L1 can potentially bridge
the performance gap between inclusive and non-inclusive
cache hierarchies, the high bandwidth demands required by
TLHs require an alternate low bandwidth technique to allow
the LLC to derive or infer the global temporal locality.

B. Early Core Invalidation

Figure 6 presents the performance of ECI for the different
workload mixes. The figure shows that ECI improves
performance by more than 7% for four out of the 12
workloads. The four workloads correspond to the same
workloads that benefit from TLHs, i.e. workloads where a
CCF application is concurrently executing with LLCT or

Figure 5: Performance of Temporal Locality Hints (TLHs).

TLH-IL1

TLH-DL1

TLH-L1

TLH-L2

TLH-L1-L2

Non-Inclusive LLC

P
er

fo
rm

an
ce

 R
el

at
iv

e
to

 I
n

cl
u

si
o

n

M
IX

_
0

0

M
IX

_
0

1

M
IX

_
0

2

M
IX

_
0

3

M
IX

_
0

4

M
IX

_
0

5

M
IX

_
0

6

M
IX

_
0

7

M
IX

_
0

8

M
IX

_
0

9

M
IX

_
1

0

M
IX

_
1

1

A
ll

 (
1

0
5

)

P
er

fo
rm

an
ce

 R
el

at
iv

e
to

 I
n

cl
u

si
o

n

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

149

1.3

1.3

1.2 1.2

1.1
1.1

1

1

0 10 20 30 40 50 60 70 80 90 100

Workload ID

ECI

Non-Inclusive LLC

1.3

1.3

1.2

1.2

1.1

1.1

1

1

0 10 20 30 40 50 60 70 80 90 100

Workload ID

QBS-IL1

QBS-DL1

QBS-L1

QBS-L2

QBS-L1-L2

Non-Inclusive LLC

 QBS

Non-Inclusive LLC

Figure 6: Performance of Early Core Invalidation (ECI).

LLCF applications. On average, ECI bridges 55% of the gap
between inclusive and non-inclusive caches. To illustrate this,
Figure 6 also presents the s-curve for ECI for all 105
workloads. Across all workloads, ECI provides up to 30%
improvement in performance with the worst case outlier
losing only 1.6% performance. Unlike TLHs, ECIs are
initiated from the LLC to derive the temporal locality of lines.
The additional back-invalidate requests required by ECI on
average is less than 50% (in the worst case it doubles). While
the increase in back-invalidates might seem significant, the
extra messages introduced by ECI are relative to the number
of LLC misses. On average, our studies show an LLC miss
rate of 5 misses per 1000 cycles. ECI increases the number of
back-invalidates from 5 transactions per 1000 cycles to 7
transactions per 1000 cycles. Since the number of transactions
is small to begin with, the increase in back-invalidate requests
from the LLC is negligible and can easily be sustained by the
cores. As our studies show, the increase in back snoop traffic
from the LLC to the cores does not impact performance. The
first order benefit of ECI is from avoiding misses to main
memory (Cache misses are discussed in Section D).

C. Query Based Selection

Figure 7 shows the performance of QBS when applied to
different caches in the hierarchy. QBS-IL1 and QBS-DL1
ensure that cache lines resident in the IL1 or DL1 caches are
not evicted by the LLC. QBS-L1 ensures that cache lines that
are resident in any L1 cache are not evicted by the LLC. QBS-

L2 ensures that cache lines resident only in the L2 are not
evicted by the LLC. Finally, QBS-L1-L2 ensures that cache
lines resident in any cache in the hierarchy are not evicted by
the LLC. The figure shows that QBS-IL1 consistently
performs better than QBS-DL1. Since instruction cache
misses stall the front-end of the pipeline from supplying
instructions to the back-end, on average, it is more important
to retain code lines in the LLC until their temporal locality is
exhausted in the instruction cache. On average, QBS-IL1
improves performance by 2.7% and QBS-DL1 improves
performance by 1.6%. QBS-L1 is additive of QBS-IL1 and
QBS-DL1 and improves performance by 4.5%. Figure 7 also
shows that QBS-L1 consistently performs better than QBS-
L2—QBS-L2 improves performance on average by 1.2%.
Again, this is because the L1 caches filter out the temporal
locality from the L2 caches. Finally, Figure 7 shows that QBS-
L1-L2 outperforms non-inclusion on average. To illustrate
this, Figure 7 also presents the s-curve for QBS for all 105
workloads. On average, QBS improves performance by 6.5%
while non-inclusion improves performance by 6.1%.

We also evaluated versions of QBS that limit the number
of queries that the LLC can make before selecting a victim.
We evaluated query limits of 1, 2, 4, and 8 for QBS and
observed 6.2%, 6.5%, 6.6% and 6.6% performance
improvements respectively. The baseline inclusive cache
hierarchy can be thought of having 0 queries. Performance
does not significantly improve beyond two queries because
the total capacity of the on-chip caches is equal to the capacity

Figure 7: Performance of Query Based Selection (QBS).

ECI

Non-Inclusive LLC

P
er

fo
rm

an
ce

 R
el

at
iv

e
to

 I
n

cl
u

si
o

n

P
er

fo
rm

an
ce

 R
el

at
iv

e
to

 I
n

cl
u

si
o

n

M
IX

_
0

0

M
IX

_
0

0

M
IX

_
0

1

M
IX

_
0

1

M
IX

_
0

2

M
IX

_
0

2

M
IX

_
0

3

M
IX

_
0

3

M
IX

_
0

4

M
IX

_
0

4

M
IX

_
0

5

M
IX

_
0

5

M
IX

_
0

6

M
IX

_
0

6

M
IX

_
0

7

M
IX

_
0

7

M
IX

_
0

8

M
IX

_
0

8

M
IX

_
0

9

M
IX

_
0

9

M
IX

_
1

0

M
IX

_
1

0

M
IX

_
1

1

M
IX

_
1

1

A
ll

 (
1

0
5

)
A

ll
 (

1
0

5
)

P
er

fo
rm

an
ce

 R
el

at
iv

e
to

 I
n

cl
u

si
o

n

P
er

fo
rm

an
ce

 R
el

at
iv

e
to

 I
n

cl
u

si
o

n

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

150

Figure 8: Cache Performance Relative to Inclusion.

of two ways of the LLC. On average, sending only one query
is sufficient to achieve the bulk of the performance benefits.
When QBS only sends one query, like ECI, our studies
showed a 50% increase in back-invalidate requests from the
LLC to the core caches. As we discussed for ECI, the 50%
increase in back-invalidate requests is negligible because the
traffic is small to begin with and the increase in back-
invalidate requests from the LLC to the cores can be easily
sustained. Our studies show that the increase in traffic from
the LLC to the cores does not impact performance. Like ECI,
the first order benefit of QBS is from avoiding LLC misses.

D. Effect of TLA Mechanisms on Cache Misses

Since inclusion victims require re-fetching ―hot‖ lines from
memory, we use LLC miss reduction as the metric to measure
the goodness of the proposed TLA policies. While reduction
in L1 cache misses can also be compared, they are not
applicable to ECI or L2 TLH because they both evict lines
from the L1 cache. However, they both avoid requests to
memory by preserving ―hot‖ lines in the LLC. Thus, we
present reduction in LLC misses since this metric is applicable
to all the TLA policies. We verified that the TLA proposals

misses by 8.2%, L2 TLH by 4.8%, ECI by 6.5%, QBS by
9.6%, non-inclusive caches by 9.3%, and exclusive caches by
18.2%. On average, QBS performs better than ECI because
QBS eliminates the time window problem associated with
ECI by updating the replacement state instantly instead of
waiting for the line to be rescued by the core

6
. This allows

QBS to perform similar to non-inclusive caches without the
complexity of non-inclusion. Figure 8 also presents an s-curve
that compares reduction in cache misses across all 105
workload mixes for QBS. Like non-inclusion, QBS reduces
cache misses by as much as 80%. These results again
emphasize that non-inclusive caches primarily address
inclusion victims and not extra capacity. Only exclusive
caches take advantage of the extra cache capacity.

E. Summary of All TLA Policies

Figure 9a summarizes the performance of the TLA
mechanisms proposed in this paper compared to the baseline
inclusive cache. The figure shows that QBS performs similar
to a non-inclusive cache hierarchy. To ensure that the
performance benefits of the TLA mechanisms are only from
reducing inclusion victims, we also evaluated the performance

reduce L1 cache misses where applicable.
Figure 8 presents the reduction in LLC misses for the

different TLA policies, non-inclusive cache, and exclusive
cache when compared to the baseline inclusive cache. The bar
labeled All represents the average reduction in LLC misses for
all 105 workload mixes. On average, L1 TLH reduces LLC

6. A version of QBS that back-invalidates lines from the core caches but
updates the LLC replacement was also evaluated. This modified QBS
version is similar to ECI in that lines are evicted from the core caches.
We find that the modified QBS policy performs similar to the proposed
QBS mechanism. This implies that the bulk of QBS benefits are from
avoiding memory latency (not LLC hit penalty).

Figure 9: Performance of TLA Cache Management Policies In the Presence and Absence of Inclusion.

50
100

40 80

30 60

20
40

10 20

0 0

-20
0 10 20 30 40 50 60

Workload ID

70 80 90 100

TLH-L1

TLH-L2

ECI

QBS

Non-Inclusive LLC

Exclusive LLC

QBS

Non-Inclusive LLC

1.3 1.3

1.2 1.2

1.1 1.1

1 1

(a) Baseline Inclusive Cache (b) Baseline Non-Inclusive Cache

TLH-L1

TLH-L2

ECI

QBS

Exclusive LLC

TLH-L1

TLH-L2

ECI

QBS

Non-Inclusive LLC

P
er

fo
rm

an
ce

 R
el

at
iv

e
to

 I
n

cl
u

si
o

n

%
 F

ew
er

 L
L

C
 M

is
se

s
R

el
at

iv
e

to
 I

n
cl

u
si

o
n

M
IX

_
0

0

M
IX

_
0

0

M
IX

_
0

1

M
IX

_
0

1

M
IX

_
0

2

M
IX

_
0

2

M
IX

_
0

3

M
IX

_
0

3

M
IX

_
0

4

M
IX

_
0

4

M
IX

_
0

5

M
IX

_
0

5

M
IX

_
0

6

M
IX

_
0

7

M
IX

_
0

6

M
IX

_
0

8

M
IX

_
0

7

M
IX

_
0

9

M
IX

_
0

8

M
IX

_
1

0

M
IX

_
0

9

M
IX

_
1

1

M
IX

_
1

0

A
ll

 (
1
0
5

)

M
IX

_
1

1

A
L

L
(1

0
5

)

P
er

fo
rm

an
ce

 R
el

at
iv

e
to

 N
o

n
-I

n
cl

u
si

o
n

%
 F

ew
er

 L
L

C
 M

is
se

s
R

el
at

iv
e

to
 I

n
cl

u
si

o
n

M
IX

_
0

0

M
IX

_
0

1

M
IX

_
0

2

M
IX

_
0

3

M
IX

_
0

4

M
IX

_
0

5

M
IX

_
0

6

M
IX

_
0

7

M
IX

_
0

8

M
IX

_
0

9

M
IX

_
1

0

M
IX

_
1

1

g
e
o

m
ea

n

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

151

Figure 10: Scalability of TLA Policies to Different Cache Ratios.

impact of these mechanisms on a non-inclusive cache (where
inclusion victims do not exist). If there were some other
benefits besides reducing inclusion victims, we would expect
benefits from TLA mechanisms on a non-inclusive cache.
Figure 9b summarizes the performance of the TLA
mechanisms normalized to the performance of a non-inclusive
LLC. The results show that TLA cache management policies
improve the performance of a non-inclusive cache by only
0.4–1.2%. These results show that the TLA mechanisms
provide insignificant improvement in performance for a non-
inclusive cache. However, they significantly improve
inclusive cache performance. Thus, we conclude that the first
order benefits of a non-inclusive cache are primarily from
avoiding inclusion victims. Finally, the figure shows that on
average, an exclusive cache hierarchy has 2.5% better
performance than a non-inclusive cache hierarchy. This shows
that eliminating inclusion victims can significantly bridge the
performance gap between inclusive and exclusive cache
hierarchies. Once inclusion victims are eliminated, the
remaining gap between inclusive and exclusive caches is
primarily due to the extra capacity in the hierarchy.

F. Scalability to Different Cache Ratios

Figure 10 presents the scalability of the proposed TLA
mechanisms for different core cache to LLC ratios. The figure
shows the performance of the TLA mechanisms for a 1MB,
2MB, 4MB, and 8MB LLC. The L2 to LLC ratios for these
cache sizes are 1:2, 1:4, 1:8, and 1:16. In general, reducing the
LLC size while keeping the core caches constant requires
better LLC management. When the LLC is not significantly
larger than the core caches, exclusive or non-inclusive caches
significantly improve performance compared to the baseline
inclusive caches. Both TLH-L1 and QBS significantly bridge
the gap between inclusive and non-inclusive caches. We find
that TLH-L1 does not perform as well as QBS for the 1:2 ratio
because ―hot‖ lines serviced by the L2 cache were suffering
from inclusion victims. We found that TLH-L1-L2 performs
similar to QBS for this configuration. Unlike TLHs (which are
impractical due to the required amount of bandwidth), we find
that a low bandwidth solution such as QBS matches non-
inclusive cache performance for the different cache ratios.

G. Scalability to Different Number of Cores

Figure 11 presents the performance of QBS when the total
number of cores in the CMP are increased. We created 100 4-

Figure 11: QBS Performance with Increasing Core Count.

core and 8-core workload mixes and evaluated QBS
performance on a CMP where the ratio of the core cache to
LLC is maintained at 1:4. The 4-core CMP has a 4MB LLC
while the 8-core CMP has an 8MB LLC. The results show that
QBS improves performance of a 4-core CMP with an
inclusive cache by 8.1% on average. Non-inclusive and
exclusive cache hierarchies for the 4-core CMP improve
performance by 8.3% and 11.4% respectively. Similarly, for
an 8-core CMP, QBS improves average performance by 9.5%
while non-inclusive and exclusive LLCs improve
performance by 10.1% and 13.6% respectively. These results
show that QBS scales with increasing number of cores and
consistently bridges more than 95% of the performance gap
between inclusive and non-inclusive cache hierarchies.

H. Hardware Overhead

The proposed TLA policies require very little hardware
overhead. They all use existing data paths in the system to
allow the LLC to become aware of the temporal locality of
lines in the core caches. TLH requires a new message class
that does not return data but merely updates the LLC
replacement state. Since TLH is not scalable due to large
bandwidth requirements, TLHs are not a practical solution—
especially since ECI and QBS serve as alternative low
bandwidth solutions. ECI requires additional logic to pre-
select the next victim in the cache and invalidate it from the
core caches. Similarly, QBS uses the existing data path to
determine whether or not a cache line can be evicted from the
LLC. The additional logic required is a state-machine to send
queries to the core caches and responses to the LLC. As the
number of HW-threads on-chip continue to increase, both
QBS and ECI are scalable solutions that are effective for any
inclusive cache hierarchy organization.

VI. RELATED WORK

Managing multi-level cache hierarchies has been an important
research area for several decades [26, 24, 11, 17, 18]. Baer et
al first introduced the concept of multi-level inclusive cache
hierarchies for simplifying cache coherence [6]. Jouppi et al
proposed exclusive caches to reduce LLC conflict misses and
to also increase the effective cache capacity of the hierarchy
by not replicating lines in the LLC. Exclusive caches perform
best when the sum of the core caches is not significantly larger
than the size of the LLC [7, 1]. Non-inclusive cache
hierarchies have been proposed in the context of aggressive

1.30

1.25

1.20

1.15

1.10

1.05

1.00

1:2 1:4 1:8 1:16
Ratio of Core Cache Size to LLC Size

TLH-L1

TLH-L2

ECI

QBS

Non-Inclusive LLC
Exclusive LLC

1.30

1.25

QBS (4-core CMP)

QBS (8-core CMP)

1.20

1.15

1.10

1.05

1.00

0 10 20 30 40 50 60 70 80 90 100

Workload ID

P
er

fo
rm

a
n
c
e

R
e
la

ti
v

e
 t
o
 I

n
c
lu

si
o

n

P
er

fo
rm

a
n
c
e

R
e
la

ti
v

e
 t
o
 I

n
c
lu

si
o

n

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

152

prefetching [10, 28] and in the context of better cache
management policies [28, 12].

Zahran [27, 28] proposed the use of global replacement to
improve the performance of inclusion. The proposed
replacement policies were only evaluated for single-threaded
workloads running in isolation. The results showed that while
global replacement reduced the number of inclusion victims,
the observed performance benefits were negligible. Our
studies replicated their results for single-threaded workloads,
however, our results indicate that global temporal locality
indeed benefits CMPs. Garde et al [13] followed up on
Zahran‘s work and deconstructed global replacement for
single-core and multi-core processors. They evaluated the
potential for global replacement in inclusive caches by
analyzing the miss stream of a non-inclusive LLC.
Specifically, for their non-inclusive LLC, they measured the
number of times an LLC victim was resident in the core
caches upon eviction (i.e. a potential inclusion victim). The
problem with there approach is that the potential inclusion
victim occurs only once for a ―hot‖ line because such a ―hot‖
line continues to receive hits in the core caches and is never
re-filled in the LLC. The potential for global replacement
should have been measured in the presence of an inclusive
cache hierarchy.

Fletcher et al [12] observed inclusion victims in the
context of direct mapped network caches and proposed three
solutions to address the problem. The proposed solutions
include increasing the cache associativity, a victim cache [18],
or making the LLC non-inclusive and using a snoop filter
(called a tag cache in the paper) to ease cache coherence.
They showed that increasing the network cache associativity
and victim caches reduce the negative effects of inclusion
victims. The proposed mechanisms require additional
hardware structures (e.g. victim cache and snoop filter). Our
work differs from the work of Fletcher et al in that we do not
require any additional hardware structures. The Early Core
Invalidation (ECI) proposal effectively uses an in-LLC victim
cache instead of an external victim cache. For our baseline
system, we compared the performance of both ECI and QBS
to an inclusive LLC backed by a 32-entry victim cache. We
found that the 32-entry victim cache improves average
performance by only 0.8% while ECI and QBS improves
average performance by 4.5% and 6.5% respectively.

There has also been extensive research on managing
shared caches in CMPs [14, 15, 25]. Most of the prior research
work focuses on how to efficiently partition the shared last-
level cache of a CMP. When multiple applications compete for
the shared LLC, the proposed policies dynamically provide
more cache to applications that benefit from the LLC and less
to applications that do not. However, the proposed policies
only target cache partitioning and do not address the problem
of inclusion victims. We compared the TLA policies in the
presence of intelligent cache management policies [14, 15]
and find that we achieve similar performance improvements.

VII. SUMMARY

Inclusive caches are desirable because they simplify cache
coherence. However, inclusive caches limit performance due
to inclusion victims. In contrast, non-inclusive caches

eliminate inclusion victims but come at the expense of
increasing coherence complexity. This paper improves
inclusive cache performance by making these contributions:

1. We show that a better managed inclusive cache provides
equal or better performance than a non-inclusive cache.
Specifically, we show that the bulk of non-inclusive (and
exclusive) cache performance over inclusive caches is
due to avoiding inclusion victims and not the extra
caching capacity in the hierarchy. Inclusion victims occur
because an inclusive LLC is unaware of the temporal
locality of ―hot‖ lines in the core caches.

2. We propose Temporal Locality Hints (TLH) as a
mechanism to convey the temporal locality of lines
referenced in the core caches to the LLC. We show that
TLHs sent by the L1 cache significantly reduce the
number of inclusion victims. TLHs, however,
significantly increase on-chip bandwidth.

3. We propose Early Core Invalidation (ECI) as a low
bandwidth technique used by the LLC to derive a line‘s
temporal locality. Unlike TLHs, ECI is only triggered on
LLC misses. ECI selects the next potential LLC victim
and invalidates that line from the core caches while
retaining it in the LLC. ECI employs the heuristic that if
the next potential LLC victim line is ―hot‖, it will be
serviced by the LLC (instead of the core caches) on the
subsequent access causing an LLC replacement state
update. However, ECI limits performance when the
subsequent access occurs after a miss (to the same set).

4. We propose Query Based Selection (QBS) as an
alternative to ECI. QBS employs the heuristic that the
core caches are best suited to inform the LLC on the
temporal locality of a line. In the paper, we show that
lines resident in the core caches have high temporal
locality and should not be evicted from the LLC. In
doing so, QBS allows inclusive caches to approach the
performance of non-inclusive caches.

For our baseline 2-core CMP, we show that TLHs issued from
the L1 cache bridge 85% of the gap between inclusive and
non-inclusive caches. ECI bridges 55% of the gap and QBS
performs similar to non-inclusive caches. Our studies show
that when non-inclusion must be enforced due to target core
cache to LLC size ratios, (e.g. 1:2 or 1:4), the QBS technique
allows chip designers to maintain the coherence benefits of
inclusion while performing similar to a non-inclusive cache.
This is especially important since chip designers today are
willing to sacrifice coherence benefits for the performance
improvement of non-inclusive LLCs [1]. Using QBS, we
report 10-33% performance improvement for 25 of the 105
workloads on 2, 4 and 8 core systems with a 1:4 hierarchy and
16% performance improvement on systems with a 1:2
hierarchy. As the number of cores sharing an LLC increases,
cache contention increases and addressing inclusion victims
becomes a growing concern. ECI and QBS are scalable and
perform better with increasing core counts. Both introduce
extra messages into the system that do not require significant
additional bandwidth or additional hardware structures.

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

153

VIII. ACKNOWLEDGEMENT

The authors would like to thank Bushra Ahsan, Michelle
Moravan Sebot, Stephanie Postal, Moinuddin Qureshi, Paul
Racunas, Julien Sebot, Mohammed Zahran, and the
anonymous reviewers for their feedback in improving the
quality of this paper.

REFERENCES

[1] ―AMD Athlon Processor and AMD Duron Processor with full-speed on-
die L2 cache,‖ June 2000.

[2] Inside the Intel Itanium 2 Processor‖, HP Technical White Paper, July
2002.

[3] Intel. Intel Core i7 Processor. http://www.intel.com/products/processor/
corei7/specifications.htm

[4] http://download.intel.com/products/processor/corei7/319724.pdf
[5] A. Agarwal, R. Simoni, J. Hennessy, and M. Horowitz. An evaluation of

directory schemes for cache coherence. In ISCA, 1988.
[6] J. L. Baer and W. Wang. ―On the Inclusion Properties for Multi-level

Cache Hierarchies.‖ In ISCA, 1988.
[7] L. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk, S. Qadeer, B.

Sano, S. Smith, R. Stets, and B. Verghese. ―Piranha: A Scalable
Architecture Based on Single-Chip Multiprocessing.‖ In ISCA, 2000.

[8] M. Chaudhuri. ―Pseudo-LIFO: The Foundation of a New Family of
Replacement Policies for Last-level Caches‖. In Micro, 2009.

[9] X. Chen, Y. Yang, G. Gopalakrishnan, and C. Chou. ―Reducing
verification complexity of a multicore coherence protocol using assume/
guarantee.‖ In FMCAD, 2006.

[10] M. J. Mayfield, T. H. Nguyen, R. J. Reese, and M. T. Vaden. ―Modified
L1/L2 cache inclusion for aggressive prefetch.‖ U. S. Patent 5740399.

[11] S. McFarling. ―Cache Replacement with Dynamic Exclusion.‖ In ISCA-
1992.

[12] K. Fletcher, W. E. Speight, and J. K. Bennett. ―Techniques for Reducing
the Impact of Inclusion in Shared Network Cache Multiprocessors.‖ Rice
ELEC TR 9413, 1995.

[13] R. V. Garde, S. Subramaniam, and G. H. Loh. ―Deconstructing the
Inefficacy of Global Cache Replacement Policies.‖ In WDDD-2008.

[14] A. Jaleel, K. Theobald, S. Steely, and J. Emer. ―High Performance Cache
Replacement Using Re-Reference Interval Prediction (RRIP)‖. In ISCA-
2010.

[15] A. Jaleel, W. Hasenplaugh, M. K. Qureshi, J. Sebot, S. Steely, and J.
Emer. ―Adaptive Insertion Policies for Managing Shared Caches‖. In
PACT, 2008.

[16] A. Jaleel, R. Cohn, C. K. Luk, B. Jacob. CMP$im: A Pin-Based On-The-
Fly Multi-Core Cache Simulator. In MoBS, 2008.

[17] N. Jouppi and S. E. Wilton. ―Tradeoffs in two-level on-chip caching.‖ In
ISCA, 1994.

[18] N. P. Jouppi. ―Improving direct-mapped cache performance by the
addition of a fully associative cache and prefetch buffers.‖ In ISCA,
1990.

[19] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S.
Wallace, V. J. Reddi, K. Hazelwood. ―Pin: building customized program
analysis tools with dynamic instrumentation.‖ In PLDI, pages 190–200,
2005.

[20] H. Patil, R. Cohn, M. Charney, R. Kapoor, and A. Sun. ―Pinpointing
Representative Portions of Large Intel Itanium Programs with Dynamic
Instrumentation‖. In MICRO, 2004.

[21] M. K. Qureshi and Y. N. Patt. ―Utility-based Cache Partitioning - A low
overhead high performance run time mechanism to partition shared
caches‖, In MICRO, 2006.

[22] V. Salapura, M. Blumrich, and A. Gara. Design and implementation of
the Blue Gene/P snoop filter. In HPCA, 2008.

[23] R. Simoni. Cache Coherence Directories for Scalable Multiprocessors.
PhD thesis, Stanford University, Oct. 1992.

[24] A. J. Smith. ―Cache Memories.‖ ACM Computing Surveys, 1982.
[25] Y. Xie, and G. H. Loh. ―PIPP: Promotion/Insertion Pseudo-Partitioning

of Multi-Core Shared Caches.‖ In ISCA, 2009
[26] D. Weiss, J. J. Wuu, and V. Chin. ―The On-Chip 3-MB Subarray-Based

Third-Level Cache on an Itanium Microprocessor.‖ In IEEE Journal of
Solid-State Circuits, 2002.

[27] M. Zahran. ―Non-inclusion property in multi-level caches revisited.‖, in
IJCA‘07, 2007.

[28] M. Zahran. ―Cache Replacement Policy Revisited.‖, WDDD, 2007.
[29] Y. Zheng, B. T. Davis, and M. Jordan. ―Performance Evaluation of

Exclusive Cache Hierarchies.‖ In ISPASS, 2004.

http://www.intel.com/products/processor/
http://download.intel.com/products/processor/corei7/319724.pdf

