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ABSTRACT 
We demonstrate a browser-only micro-architectural 

side-channel attack. Our approach is different from 
earlier works in this genre in that the victim just needs to 
visit an untrusted webpage that has content that the 
attacker has control over in order for the attack to be 
carried out. As the majority of desktop browsers now 
used to access the Internet are vulnerable to such side 
channel attacks, this makes our attack model highly 
scalable, tremendously relevant to, and applicable to, the 
modern Web. Our approach, which is a modification of 
Liu et al[14] .'s last-level cache assault, enables a remote 
adversary to retrieve data from other processes, users, 
and even virtual machines that are executing on the same 
physical host as the victim. We outline the principles 
underlying our attack and assess its functional merits. 
Furthermore, we demonstrate how it may be exploited to 
undermine user privacy in a typical context, enabling an 
attacker to eavesdrop on a victim who uses private 
browsing. Although it is possible to defend against this 
side channel, doing so may come at the expense of useful 
browser usage.  
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1. INTRODUCTION 
Side-channel analysis is a powerful cryptanalytic technique. 

It allows attackers to extract information hidden inside a 
device, by analyzing the physical signals (e.g., power, heat) 
that the device emits as it performs a secure computation [15]. 
Allegedly used by the intelligence community as early as 
in WWII, and first discussed in an academic context by 
Kocher in 1996 [13], side-channel analysis has been shown 
to be effective in a plethora of real-world systems, ranging 
from car immobilizers to high-security cryptographic copro- 
cessors [6,20]. A particular kind of side-channel attacks that 
are relevant to personal computers are cache attacks, which 
exploit the use of cache memory as a shared resource be- 
tween different processes to disclose information [9, 19]. 

Even though the effectiveness of side-channel attacks is 
established without question, their application to practical 
settings is debatable, with the main limiting factor being the 
attack model they assume; excluding network-based timing 
attacks [4], most side-channel attacks require an attacker in 
“close proximity” to the victim. Cache attacks, in particular, 
assume that the attacker is capable of executing binary code 
on the victim’s machine. While  this  assumption  holds  true 
for IaaS environments, like Amazon’s cloud platform, where 
multiple parties may  share  a  common  physical  machine,  it 
is less relevant in other settings. 

In this paper, we challenge this limiting assumption by 
presenting a successful cache attack that assumes a far more 
relaxed and practical attacker model. Specifically, in our 
model, the victim merely has to access a website owned by 
the attacker. Despite this minimal model, we show how the 
attacker can launch an attack in a practical time frame and 
extract meaningful information from the victim’s machine. 
Keeping in tune with this computing setting, we choose not 
to focus on cryptographic key recovery, but rather on track- 
ing user behaviour. The attacks described herein are highly 
practical: (a.) practical in the assumptions and limitations 
they cast upon the attacker, (b.) practical in the time they 
take to run, and (c.) practical in terms of the benefit they 
deliver to the attacker. 

For our attack we assume that the victim is using a com- 
puter powered by a late-model Intel processor. In addition, 
we assume that the victim is accessing the web through a 
browser with comprehensive HTML5 support. As we show 
in Section 6.1, this covers the vast majority of personal com- 
puters connected to the Internet. The victim is coerced to 
view a webpage containing an attacker-controlled element, 
like an advertisement, while the attack code itself, which we 
describe in more detail in Section 3, executes a JavaScript- 
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based cache attack, which lets the attacker track accesses 
to the victim’s last-level cache over time. Since this single 
cache is shared by all CPU cores, this access information can 
provide the attacker with a detailed knowledge regarding the 
user and system under attack. 

Crafting a last-level cache attack that can be launched 
over the web using JavaScript is quite challenging; JavaScript 
code cannot load shared libraries or execute native code. 
More importantly, it is forced to make timing measurements 
using scripting language function calls instead of high-fidelity 
timing instructions. Despite these challenges, we success- 
fully extended cache attacks to the web environment: 

 

We present a novel method for creating a non-canonical 
eviction set for the last-level cache. In contrast to the 
recent work by Liu et al. [14], our method does not 
require system support for large pages, and therefore, 
it can immediately be applied to a wider variety of 
systems. More importantly, we show that our method 
runs in a practical time frame. 

 
We demonstrate a last-level cache attack using Java- 
Script code only. We evaluate its performance using a 
covert channel method, both among different processes 
running on the same machine and between a VM client 
and its host. The nominal capacity of the JavaScript- 
based channel is in the order of hundreds of Kbit/s, 
comparable to that of native code approaches [14]. 

 
We show how cache-based attacks can be used to track 
the behaviour of users. Specifically, we present a simple 
classifier-based attack that lets a  malicious  webpage 
spy on the user’s browsing activity, detecting the use 
of common websites with an accuracy of over 80%. 
Remarkably, it is even possible to spy on the private 
browsing session of a completely different browser. 

 
2. BACKGROUND AND RELATED WORK 

 Memory Hierarchy of Intel CPUs 
Modern computer systems incorporate high-speed CPUs 

and a large amount of lower-speed RAM. To bridge the per- 
formance gap between these two components, they make 
use of cache memory: a type of memory that is smaller but 
faster than RAM (in terms of access time). Cache memory 
contains a subset of the RAM’s contents recently accessed by 
the CPU, and is typically arranged in a cache hierarchy— 
series of progressively larger and slower memory elements 
are placed in various levels between the CPU and RAM. 

Figure 1 shows the cache hierarchy of Intel Haswell CPUs, 
incorporating a small, fast level 1 (L1) cache, a slightly larger 
level 2 (L2) cache, and finally, a larger level 3 (L3) cache, 
which in turn is connected to RAM. Whenever the CPU 
wishes to access physical memory, the respective address is 
first searched for in the cache hierarchy, saving the lengthy 
round-trip to RAM. If the CPU requires an element that is 
not currently in the cache, an event known as a cache miss, 
one of the elements currently residing in the cache is evicted 
to make room for this new element. The decision of which 
element to evict in the event of a cache miss is made by 
a heuristic algorithm that has changed between processor 
generations (see Section 6.2). 
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Figure 1: Cache memory hierarchy of Intel CPUs 
(based on Ivy Bridge Core i5-3470). 

 

 
Intel’s cache micro-architecture is inclusive: all elements 

in the L1 cache exist in the L2 and L3 caches. Conversely, 
if a memory element is evicted from the L3 cache, it is also 
immediately evicted from the L2 and L1 cache.   It should 
be noted that the AMD cache micro-architecture is exclu- 
sive, and thus, the attacks described in this paper are not 
immediately applicable to that platform. 

In this work, we focus on the L3 cache, commonly referred 
to as the last-level cache (LLC). The LLC is shared among 
all cores, threads, processes, and even virtual machines run- 
ning on a certain CPU chip, regardless of protection rings 
or other isolation mechanisms. On Intel CPUs, the LLC is 
divided into several slices: each core of the CPU is directly 
connected to one of these cache slices, but can also access 
all other slices by using a ring bus interconnection. 

Due to the relatively large size of the LLC, it is not effi- 
cient to search its entire contents whenever the CPU accesses 
the RAM. Instead, the LLC is further divided into  cache 
sets, each covering a fixed subset of the physical memory 
space. Each of these cache sets contains several cache lines. 
For example, the Intel Core i7-4960HQ processor, belonging 
to the Haswell family, includes 8192 (213) cache sets, each 
of which is 12-way associative. This means that every cache 
set can hold 12 lines of 64 (26) bytes each, giving a total 
cache size of 8192x12x64=6MB. When the CPU needs to 
check whether a given physical address is present in the L3 
cache, it calculates which cache set is responsible for this 
address, and then only checks the cache lines correspond- 
ing to this set. As a consequence, a cache miss event for 
a physical address will result in the eviction of only one of 
the relatively small amount of lines sharing its cache set, a 
fact we make great use of in our attack. The method by 
which 64-bit physical addresses are mapped into 12-bit or 
13-bit cache set indices is undocumented and varies among 
processor generations, as we discuss in Section 6.2. 
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In the case of Sandy Bridge, this mapping was reverse- 
engineered by Hund et al. [10], where they showed that of 
the 64 physical address bits, bits 5 to 0 are ignored, bits 16 
to 6 are taken directly as the lower 11 bits of the set index, 
and bits 63 to 17 are hashed to form the slice index, a 2-bit 
(in the case of quad-core) or 1-bit (in the case of dual-core) 
value assigning each cache set to a particular LLC slice. 

In addition to the above, modern computers typically sup- 
port virtual memory, restricting user processes from having 
direct access to the system’s RAM. Instead, these processes 
are allocated virtual memory pages. The first time a page 
is accessed by an executing process, the Operating System 
(OS) dynamically associates the page with a page frame in 
RAM. The Memory  Management  Unit  (MMU)  is  in  charge 
of mapping the virtual memory accesses made by different 
processes to accesses in physical memory. The size of pages 
and  page  frames  in  most  Intel  processors  is  typically  set 
to 4KB1, and both pages and page frames are page-aligned 
(i.e.,  the starting address of each page is a multiple of the 
page size). This means that the lower 12 bits of any virtual 
address and its corresponding physical address are generally 
identical, another fact we use in our attack. 

 

 Cache Attacks 
The cache attack is a well-known representative of the gen- 

eral class of micro-architectural side-channel attacks, which 
are  defined  by  Aciiçmez  [1]  as  attacks  that “exploit  deeper 
processor ingredients below the trust architecture  bound- 
ary” to recover secrets from various secure systems. Cache 
attacks make use of the fact that—regardless of higher-level 
security mechanisms, like protection rings, virtual memory, 
hypervisors, and sandboxing—secure and insecure processes 
can interact through their shared use of the  cache.  This 
allows an attacker to craft a “spy” program that can make 
inferences about the internal state of a secure process. First 
identified by Hu [9], several results have shown how the cache 
side-channel can be used to recover AES keys [3, 19], RSA 
keys [21], or even allow one virtual machine to compromise 
another virtual machine running on the same host [24]. 

Our attack is modeled after the PRIME+PROBE method, 
which was first described by Osvik et al. [19] in the context 
of the L1 cache, and later extended by Liu et al. [14] to last- 
level caches on systems with large pages enabled. In this 
work, we further extend this attack to last-level caches in 
the more common case of 4KB-sized pages. 

In general, the PRIME+PROBE attack follows a four-step 
pattern. In the first step, the attacker creates one or more 
eviction sets. An eviction set is a sequence of memory ad- 
dresses that are all mapped by the CPU into the same cache 
set. The PRIME+PROBE attack also assumes that the victim 
code uses this cache set for its own code or data. In the sec- 
ond step, the attacker primes the cache set by accessing the 
eviction set in an appropriate way. This forces the eviction 
of the victim’s data or instructions from the cache set and 
brings it to a known state. In the third step, the attacker 
triggers the victim process, or passively waits for it to exe- 
cute. During this execution step, the victim may potentially 
utilise the cache and evict some of the attacker’s elements  
from the cache set. In the fourth step, the attacker probes 
the cache set by accessing the eviction set again. 

 
12MB and 1GB pages are also supported in newer CPUs. 

A probe step with a low access latency suggests that the 
attacker’s eviction set is still in the cache. Conversely, a 
higher access latency suggests that the victim’s code made  
use of the cache set and evicted some of the attacker’s mem- 
ory elements. The attacker thus learns about the victim’s 
internal state. The actual timing measurement is carried out 
by using the (unprivileged) instruction rdtsc, which pro- 
vides a high-fidelity measurement of the CPU cycle count. 
Iterating over the eviction set in the probing phase forces the 
cache set yet again into an attacker-controlled state, thus 
preparing for the next round of measurements. 

 
 
 

3. PRIME+PROBE IN JAVASCRIPT 
JavaScript is a dynamically typed, object-based scripting 

language with runtime evaluation that powers the client side 
of the modern web. Websites deliver JavaScript programs 
to the browser, which in turn are (typically) compiled and 
optimized using a Just-In-Time (JIT) mechanism. 

The core functionality of the JavaScript language is de- 
fined in the standard ECMA-262 [5]. The language standard 
is complemented by a large set of application programming 
interfaces (APIs) defined by the World Wide Web Consor- 
tium [27], which make the language practical for developing 
web content. The JavaScript API set is constantly evolving, 
and browser vendors add support for new APIs over time 
according to their own development schedules. Two specific 
APIs that are of use to us in this work are the Typed Array 
Specification [7], which allows efficient access to unstruc- 
tured binary data, and the High Resolution Time API [16], 
which provides JavaScript with submillisecond time mea- 
surements. As we show in Section 6.1, the vast majority of 
Web browsers that are in use today support both APIs. 

By default, browsers will automatically execute every Java- 
Script program delivered to them by a webpage.  To limit 
the potential damage of this property, JavaScript code runs 
in a sandboxed environment—code delivered via JavaScript 
has severely restricted access to the system. For example, it 
cannot open files, even for reading, without the permission 
of the user. Also, it cannot execute native code or load na- 
tive code libraries.  Most importantly, JavaScript code has 
no notion of pointers. Thus, it is impossible to determine 
the virtual address of a JavaScript variable. 

 
Methodology. The four steps involved in a successful 

PRIME+PROBE attack (see Section 2.2) are  the  following: 
(a.) creating an eviction set for one or more relevant cache 
sets; (b.) priming the cache set; (c.) triggering the victim 
operation; (d.) probing the cache set again. Each of these 
steps must be implemented in JavaScript and overcome the 
unique limitations of the web environment. 

 
 Creating an Eviction Set 

In the first step of a PRIME+PROBE attack the attacker 
creates an eviction set for a cache set whose activity should 
be  tracked  [14].  This  eviction  set  consists  of  a  sequence 
of variables (data) that are all mapped by the CPU into a 
cache set that is also used by the victim process.  We first 
show how we create an eviction set for an arbitrary cache 
set, and later address the problem of finding which cache set 
is particularly interesting from the attacker’s perspective. 
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Set assignments for variables in the LLC are made by 
reference to their physical memory addresses, which are not 
available to unprivileged processes.2 Liu et al. [14] partially 
circumvented this problem by assuming that the system is 
operating in large page (2MB) mode, in which the lower 21 
bits of the physical and virtual addresses are identical, and 
by the additional use of an iterative algorithm to resolve the 
unknown upper (slice) bits of the cache set index. 

In the attack model we consider, the system is not running 
in large page mode, but rather in the more common 4KB 
page mode, where only the lower 12 bits of the physical 
and virtual addresses are identical. To our further difficulty, 
JavaScript has no notion of pointers, so even the virtual 
addresses of our own variables are unknown to us. This 
makes it very difficult to provide a deterministic mapping of 
memory address to cache sets. Instead, we use the heuristic 
algorithm described below. 

We assume a victim system with s = 8192 cache sets, 
each with l = 12-way associativity. Hund et al. [10] suggest 
accessing a contiguous 8MB physical memory eviction buffer 
for completely invalidating all cache sets in the L3 cache. We 
could not allocate such an eviction buffer in user-mode; in 
fact, the aforementioned work was assisted by a kernel-mode 
driver. Instead, we allocated an 8MB byte array in virtual 
memory using JavaScript (which was assigned by the OS 
into an arbitrary and non-contiguous set of 4KB physical 
memory pages), and measured the system-wide effects of 
iterating over this buffer. 

We discovered that access latencies to unrelated variables 
in memory increased by a noticeable amount when they were 
accessed immediately after iterating through this eviction 
buffer. We also discovered that the slowdown effect per- 
sisted even if we did not access the entire buffer, but rather 
accessed it in offsets of 1 per every 64 bytes (this behaviour 
was recently extended into a full covert channel [17]). How- 
ever, it is not immediately clear how to map each of the 131K 
offsets we accessed inside this eviction buffer into each of the 
8192 possible cache sets, since we know neither the physical 
memory locations of the various pages of our buffer, nor the 
mapping function used by our specific micro-architecture to 
assign cache sets to physical memory addresses. 

A naive approach to solving this problem would be to fix 
an arbitrary “victim” address in memory, and then find by 
brute force which of the 8MB/64B=131K possible addresses 
in the eviction buffer are in the same cache set as this vic- 
tim address, and as a consequence, within the same cache 
set as each other. To carry out the brute-force search, the 
attacker iterates over all subsets of size l = 12 of all possi- 
ble addresses. For each subset, the attacker checks whether 
the subset serves as the eviction set for the victim address 
by checking whether accessing this subset slows down subse- 
quent accesses to the victim variable. By repeating this pro- 
cess 8192 times, each time with a different victim address, 
the attacker can identify 12 addresses that reside in each 
cache set and thereby create the eviction set data structure. 

Optimization #1. An immediate application of this 
heuristic would take an impractically long time to run. One 

simple optimization is to start with a subset containing all 
131K possible offsets, then gradually attempt to shrink it 

 

2In Linux, until recently, the mapping between virtual pages 
and physical page frames was exposed to unprivileged user 
processes through /proc/<pid>/pagemap [12]. In the lat- 
est kernels this is no longer possible [25]. 

 

 

Algorithm 1 Profiling a Cache Set. 
 

Let S be the set of currently unmapped page-aligned ad- 
dresses, and address x be an arbitrary page-aligned address 
in memory. 

1. Repeat k times: 
 

(a) Iteratively access all members of S. 

(b) Measure t1, the time it takes to access x. 

(c) Select a random page s from S and remove it. 

(d) Iteratively access all members of S\s. 

(e) Measure t2, the time it takes to access x. 

(f) If removing s caused the memory access to speed 
up considerably (i.e., t1 t2 > thres), then this 
address is part of the same set as x. Place it back 
into S. 

(g) If removing s did not cause memory access to 
speed up considerably, then s is not part of the 
same set as x. 

2. If |S| = 12, return S. Otherwise report failure. 
 

 
by removing random elements and checking that the access 
latency to the victim address stays high. The final data 
structure should be of size 12 and contain only the entries 
sharing a cache set with the victim variable. Even this opti- 
mization, however, is too slow for practical use. Fortunately, 
the page frame size of the Intel MMU, as described in Sec- 
tion 2.1, could be used to our great advantage. Since virtual 
memory is page aligned, the lower 12 bits of each virtual 
memory address are identical to the lower 12 bits of each 
physical memory address. According to Hund et al., 6 of 
these 12 bits are used to uniquely determine the cache set 
index [10]. Thus, a particular offset in our eviction buffer 
can only share a cache set with an offset whose bits 12 to 6 
are identical to its own. There are only 8K such offsets in the 
8MB eviction buffer, speeding up performance considerably. 

Optimization #2.  Another  optimization  comes  from 
the fact that if physical addresses P1 and P2 share a cache 
set, then for any value of ∆, physical addresses P1 ∆ and 
P2 ∆ also share a (possibly different) cache set. Since each 

4KB block of virtual memory maps to a 4KB block in phys- 
ical memory, this implies that discovering a single cache set 
can immediately teach us about 63 additional cache sets. 
Joined with the discovery that JavaScript allocates large 
data buffers along page frame boundaries, this finally leads 
to the greedy approach outlined in Algorithm 1. 

By running Algorithm 1 multiple times, we gradually cre- 
ate eviction sets covering most of the cache, except for those 
parts that are accessed by the JavaScript runtime itself. We 
note that, in contrast to the eviction sets created by the al- 
gorithm of Liu et al. [14], our eviction set is non-canonical : 
JavaScript has no notion of pointers, and hence, we cannot 
identify which of the CPU’s cache sets correspond to any 
particular eviction set we discover. Furthermore, running 
the algorithm multiple times on the same system will result 
in a different mapping each time. This property stems from 
the use of traditional 4KB pages instead of large 2MB pages, 
and will hold even if the eviction sets are created using na- 
tive code and not JavaScript. 
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Table 1: CPUs used to evaluate the performance of 
the profiling cache set technique (Algorithm 1). 
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Figure 2:  Cumulative performance of the profiling 
algorithm (Haswell i7-4960HQ). 

 

 
1 //  In va l i d a te   the  cache  set  
2 var  curre nt Entry  =  s tart  Addre  s s ; 
3 do 
4 curre nt Entry  = 
5 probe View . get Uint 32 ( curre nt Entry ) ; 
6 while  ( curre nt Entry  !=  start  Addre s s ) ; 
7 
8 // Measure  access  time 
9 var   start Time  =  window . performance . now ( ) ; 

10 curre nt Entry   = 
11 primeView . get Uint 32 ( var iab le  To Acce ss ) ; 
12 var   endTime = window . performance . now ( ) ; 

 
Evaluation. We implemented Algorithm 1 in JavaScript 

and evaluated it on Intel machines using CPUs from the 
Sandy Bridge, Ivy Bridge, and Haswell families, running the 
latest versions of Safari and Firefox on Mac OS X v10.10 and 
Ubuntu 14.04 LTS, respectively. The setting of the evalua- 
tion environment represented a typical web browsing session, 
with common applications, such as an email client, calen- 
dar, and even a music player running in the background. 
The attack code was loaded from an untrusted website into 
one tab of a multi-tabbed browsing session. Attacks were 
performed when the tab was the foreground tab, when the 
browser process was in the foreground but a different tab 
was the foreground tab, and when the web browser pro- 
cess was running in the background. The specifications of 
the CPUs we evaluated are listed in Table 1; the systems 
were not configured to use large pages, but instead were 
running with the default 4KB page size. The code snippet 
shown above illustrates lines 1.d and 1.e of Algorithm 1, 
and demonstrates how we iterate over the eviction set and 
measure latencies using JavaScript. The algorithm requires 
some additional steps to run under Internet Explorer (IE) 
and Chrome, which we describe in Section 6.1. 

Figure 3:  Probability distribution of access times 
for a flushed vs. unflushed variable (Haswell i7- 
4960HQ). 

 
 

Figure 2 shows the performance of our profiling algorithm 
implemented in JavaScript, as evaluated on an Intel i7-4960- 
HQ running Firefox 35 for Mac OS X 10.10. We were pleased 
to find that our approach was able to map more than 25% of 
the cache in under 30 seconds of operation, and more than 
50% of the cache after 1 minute. On systems with smaller 
cache sizes, such as the Sandy Bridge i5-2520M, profiling was 
even faster, taking less than 10 seconds to profile 50% of the 
cache. The profiling technique itself is simple to parallelize, 
since most of its execution time is spent on data structure 
maintenance and only a small part is spent on the actual 
invalidate-and-measure portion; multiple worker threads can 
prepare several data structures to be measured in parallel,  
with the final measurement step being carried out by a single 
master thread.3 Finally, note that the entire algorithm is 
implemented in 500 lines of JavaScript code. 

To verify that Algorithm 1 is capable of identifying cache 
sets, we designed an experiment that compares the access 
latencies for a flushed and an unflushed variable. Figure 3 
shows two probability distribution functions comparing the 
time required to access a variable that has recently been 
flushed from the cache by accessing the eviction set (gray 
line), with the time required to access a variable that cur- 
rently resides in the L3 cache (black line). The timing mea- 
surements were carried out using JavaScript’s high resolu- 
tion timer, and thus include the additional delay imposed 
by the JavaScript runtime. It is clear that the two distribu- 
tions are distinguishable, confirming the correct operation 
of our profiling method. We further discuss the effects of 
background noise on this algorithm in Section 6.3. 

 Priming and Probing 
Once the attacker identifies an eviction set consisting of 

12 entries that share the same cache set, the next goal is to 
replace all entries in the cache of the CPU with the elements 
of this eviction set. In the case of the probe step, the attacker 
has the added goal of precisely measuring the time required 
to perform this operation. 

 
 

3The current revision of the JavaScript specification does 
not  allow multiple worker threads to share a single buffer 
in memory. An updated specification, which supports this 
functionality, is currently undergoing a ratification process 
and is expected to be made official by the end of 2015. 
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CPU Model Micro-arch. LLC Size Cache Assoc. 

Core i5-2520M Sandy Bridge 3MB 12-way 

Core i7-2667M Sandy Bridge 4MB 16-way 

Core i5-3427U Ivy Bridge 3MB 12-way 

Core i7-3667U Ivy Bridge 4MB 16-way 

Core i7-4960HQ Haswell 6MB 12-way 

Core i7-5557U Broadwell 4MB 16-way 
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Algorithm 2 Identifying Interesting Cache Regions. 

Let Si be the data structure matched to eviction set i. 

• For each set i: 

1. Iteratively access all members of Si to prime the 
cache set. 

2. Measure the time it takes to iteratively access all 
members of Si. 

3. Perform an interesting operation. 

4. Measure once more the time it takes to iteratively 
access all members of Si. 

5. If performing the interesting operation caused the 
access time to slow down considerably, then this 
operation is associated with cache set i. 

 

 

 
Modern high-performance CPUs are highly out-of-order, 

meaning that instructions  are  not  executed  by  their  order 
in the program, but rather by the availability of input data. 
To ensure the in-order execution of critical code parts, In- 
tel provides “memory barrier” functionality through various 
instructions, one of which is the (unprivileged) instruction 
mfence. As JavaScript code  is  not  capable  of  running  it, 
we had to artificially make sure that the entire eviction set 
was actually accessed before the timing measurement code 
was run. We did so by  accessing the eviction  set in the form 
of a linked list (as was also suggested by Osvik et al. [19]), 
and making the timing measurement code artificially depen- 
dent on the eviction set iteration code. The CPU also has 
a stride prefetching feature, which attempts to anticipate 
future memory accesses based on regular patterns in past 
memory accesses. To avoid the effect of this feature we ran- 
domly permute the order of elements in the eviction set. We 
also access the eviction set in alternating directions to avoid 
an excessive amount of cache misses (see Section 6.2). 

A final challenge is the issue of timing jitter. In contrast to 
native code PRIME+PROBE attacks, which use an assembler 
instruction to measure time, our code uses an interpreted 
language API call (Window.Performance.now()), which 
is far more likely to be impacted by measurement jitter. 
In our experiments we discovered that while some calls to 
Window.Performance.now() indeed took much longer to 
execute than expected (e.g., milliseconds instead of nanosec- 
onds), the proportion of these jittered events was very small 
and inconsequential. 

 

 Identifying Interesting Cache Regions 
The eviction set allows the attacker to monitor the activity 

of arbitrary cache sets. Since the eviction set we receive 
is non-canonical, the attacker must correlate the profiled 
cache sets to data or code locations belonging to the victim. 
This learning/classification problem was addressed earlier 
by Zhang et al. [29] and by Liu et al. [14], where various 
machine learning methods were used to derive meaning from 
the output of cache latency measurements. 

To effectively carry out the learning step, the  attacker 
needs to induce the victim to perform an action, and then 
examine which cache sets were touched by this action, as 
formally defined in Algorithm 2. 

Finding a function to perform the step (3) of Algorithm 2 
was actually quite challenging, due to the limited permis- 
sions granted to JavaScript code. This can be contrasted 
with the ability of Gorka et al. [2] to trigger kernel code 
by invoking sysenter. To carry out this step, we had to 
survey the JavaScript runtime and discover function calls 
which may trigger interesting behaviour, such as file access, 
network access, memory allocation, etc. We were also inter- 
ested in functions that take a relatively short time to run 
and leave no background “trails”, such as garbage collection,  
which would impact our measurement in step (4). Several 
such functions were discovered in a different context by Ho et 
al. [8]. Since our code will always detect activity caused by 
the JavaScript runtime, the high performance timer code, 
and other components of the web browser that are running 
regardless of the call being executed, we actually call two 
similar functions and examine the difference between the 
activity profile of the two evaluations to identify relevant 
cache sets. Another approach would be to induce the user 
to perform an interesting behaviour (such as pressing a key 
on her keyboard).  The learning process in this case might 
be structured (the attacker knows exactly when the victim 
operation was executed), or unstructured (the attacker can 
only assume that relatively busy periods of system activity 
are due to victim operations). We examine both of these 
approaches in the attack we present in Section 5. 

 
 

4. NON-ADVERSARIAL SETTING 
In this section, we evaluate the capabilities of JavaScript- 

based cache probing in a non-adversarial context. By se- 
lecting a group of cache sets and repeatedly measuring their 
access latencies over time, the attacker is provided with a 
very detailed picture of the real-time activity of the cache. 
We call the visual representation of this image a memory- 
gram, since it looks quite similar to an audio spectrogram. 

A sample memorygram, collected over an idle period of 
400ms, is presented in Figure 4. The X axis corresponds to 
time, while the Y axis corresponds to different cache sets. 
The sample shown has a temporal resolution of 250s and 
monitors a total of 128 cache sets (note that the highest 
temporal resolution we were able to achieve while monitoring 
128  cache  sets  in  parallel  was      5s).  The  intensity  of  each 
pixel corresponds to the access latency of a particular cache 
set at this particular time, with black representing a low 
latency, suggesting no other process accessed this cache set 
between the previous measurement and this one, and white 
representing a higher latency, suggesting that the attacker’s 
data was evicted from the cache between this measurement 
and the previous one. 

Observing this memorygram can provide several insights. 
First, it is clear to see that despite the  use  of  JavaScript 
timers instead of machine language instructions, measure- 
ment jitter is quite  low  and  that  active  and  inactive  sets 
are clearly differentiated. It is also easy to notice several 
vertical line segments in the memorygram, indicating multi- 
ple adjacent cache sets that were all active during the same 
time period. Since consecutive cache sets (within the same 
page frame) correspond to consecutive addresses in physical 
memory, we believe this signal indicates the execution of a 
function call that spans more than 64 bytes of instructions. 
Several smaller groups of cache sets are accessed together; 
we theorise that such groups correspond to variable accesses. 
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Figure 4: Sample memorygram collected over an idle period of 400ms. The X axis corresponds to time, while 
the  Y  axis  corresponds  to  different  cache  sets.    The  sample  shown  has  a  temporal  resolution  of  250s  and 
monitors a total of 128 cache sets. The intensity of each  pixel  illustrates  the  access  latency  of  the  particular 
cache set, with black representing low latency and white representing a higher latency. 

 
Finally, the white horizontal line indicates a variable that 

was constantly accessed during our measurements (e.g., a 
variable that belongs to the measurement code or the Java- 
Script runtime). 

 Covert Channel Bandwidth Estimation 
Liu et al. [14] and Maurice et al. [17] demonstrated that 

last-level cache access patterns can be used to construct a 
high-bandwidth covert channel between virtual machines co- 
resident on the same physical host, and exfiltrate sensitive 
information. We used such a construction to estimate the 
measurement bandwidth of our attack. The design of our 
covert channel system was influenced by two requirements. 
First, we wanted the transmitter part to be as simple as 
possible, and in particular we did not want it to carry out 
the eviction set algorithm of Section 3.1. Second, since the 
receiver’s eviction set is non-canonical, it should be as simple 
as possible for the receiver to search for the sets onto which 
the transmitter was modulating its signal. 

To satisfy these requirements, our transmitter code simply 
allocates a 4KB array in its own memory and continuously 
modulates the collected data into the pattern of memory ac- 
cesses to this array. There are 64 cache sets covered by this 
array, allowing the transmission of 64 bits per time period. 
To make sure the memory accesses are easily located by the 
receiver, the same access pattern is repeated in several addi- 
tional copies of the array. Thus, a considerable percentage 
of the cache is actually exercised by the transmitter. 

The receiver code profiles the system’s RAM, and then 
searches for one of the page frames containing the data mod- 
ulated by the transmitter. To evaluate the bandwidth of this 
covert channel, we wrote a simple program that iterates over 
memory in a predetermined pattern.  Next,  we  search  for 
this memory access pattern using a JavaScript cache attack, 
and measure the maximum sampling frequency at which the 
JavaScript code could be run. We first evaluated our code 
when  both  the  transmitter  and  receiver  were  running  on 
a normal host. Next, we repeated our measurements when 
the receiver was running inside a virtual machine (Firefox 34 

achieved by the native code,  cross-VM covert channel of 
Liu et al. [14]. When the receiver code was not running 
directly on the host, but rather on a virtual machine, the 

peak bandwidth of our covert channel was ∼8kbps. 

 

5. TRACKING USER BEHAVIOR 
The majority of the related work in this field assumes 

that the attacker and the victim share a machine inside the 
data center of a cloud-provider. Such a machine is not typi- 
cally configured to accept interactive input, and hence, pre- 
vious work focused on the recovery of cryptographic keys or 
other secret state elements, such as random number genera- 
tor states [30]. In this work, we chose to examine how cache 
attacks can be used to track the interactive behaviour of the 
user, a threat which is more relevant to the attack model we 
consider. We note that Ristenpart et al. [24] have already 
attempted to track keystroke timing events using coarse- 
grained measurements of system load on the L1 cache. 

 Detecting Hardware Events 
Our first case study investigated whether our cache attack 

can detect hardware events generated by the system. We 
chose to focus on mouse and network activity because the 
OS code that handles them is non-negligible. In addition, 
they are also easily triggered by content running within the 
restricted JavaScript sandbox, allowing our attack to have 
a training phase. 

 
Design. The structure of both attacks  is  similar.  First, 

the profiling phase is carried out, allowing the attacker to 
probe individual cache sets using JavaScript. Next, during 
a training phase, the activity to be detected (e.g., network 
activity, mouse activity) is triggered, and the cache state is 
sampled multiple times with a very high temporal resolution. 
While the network activity was triggered directly by the 
measurement script (by executing a network request), we 
simply waved the mouse around over the webpage during 
the training period4. 

running on Ubuntu 14.01 inside VMware Fusion 7.1.0). The    
nominal bandwidth of our covert channel was measured to 
be 320kbps, a figure which compares well with the 1.2Mbps 

4In a full attack, the user can be enticed to move the mouse 
by having her play a game or fill out a form. 
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By comparing the cache state during the idle and active 
periods of the training phase, the attacker learns which cache 
sets are uniquely active during the relevant activity and 
trains a classifier on these cache sets. Finally, during the 
classification phase, the attacker monitors the interesting 
cache sets over time to learn about user activity. 

We used a basic unstructured training process, assuming 
that the most intensive operation performed by the system 
during the training phase would be the one being measured. 
To take advantage of this property, we calculated the Ham- 
ming weight of each measurement over time (equivalent to 
the count of cache sets which are active during a certain time 
period), then applied a k-means clustering of these Hamming 
weights to divide the measurements into several clusters. Fi- 
nally, we calculated the mean access latency of each cache 
set in every cluster, creating a centroid for each cluster. To 
classify an unknown measurement vector, we measured the 
Euclidean distance between this vector and each of these 
centroids, classifying it to the closest one. 

 
Evaluation. We evaluated our hardware event detection 

strategy on an Intel Core i7-4960HQ processor, belonging to 
the Haswell family, running Safari 8.0.6 for Mac OS 10.10.3. 
We generated network traffic using the command-line tool 
wget and mouse activity by using the computer’s internal 
trackpad to move the mouse cursor outside of the browser 
window. To provide ground truth for the network activity 
scenario, we concurrently measured the traffic on the system 
using tcpdump, and then mapped the tcpdump timestamps 
to the times detected by our classifier. To provide ground 
truth for the mouse activity scenario, we wrote a webpage 
that timestamps and logs all mouse events, then opened this 
webpage using a different browser (Chrome 43) and moved 
the mouse over this browser window. The memorygrams we 
collected for both experiments spanned 512 different cache 
sets and had a sampling rate of 500 Hz. 

Our results indicate that it is possible to reliably detect 
mouse and network activity. The measurement rate of our 
network classifier did not allow us to count individual pack- 
ets, but rather monitor periods of network (in)activity. Our 
detector was able to correctly detect 58% of these active 
periods, with a false positive rate of 2.86%. The mouse de- 
tection code actually logged more events than the ground 
truth collection code. We attribute this to the fact that 
the Chrome browser (or the OS) throttles mouse events at 
a rate of 60Hz. Yet, 85% of our mouse detection events 
were followed by a ground truth event in less than 10ms. The 
false positive rate was 3.86%, but most of the false positives 
were immediately followed by a series of true positives. This 
suggests that our classifier was also firing on other mouse- 
related events, such as “mouse down” or simply touches on  
the trackpad. Note that the mouse activity detector did not 
detect network activity (or vice versa). 

Interestingly, we discovered that our measurements were 
affected by the ambient light sensor of the victim machine. 
Ambient light sensors are always-on sensors that are in- 
stalled on high-end laptops, like MacBooks, Dell Latitude, 
Sony Vaio, and HP EliteBooks. They are enabled by default, 
and allow the OS to dynamically adjust the brightness of 
the computer screen to accommodate different lighting con- 
ditions. During our experiments we discovered that waving 
our hand in front of the laptop generated a noticeable burst 
of hardware events. This could be either the result of hard- 

Victim Browser Secure Browser 

  
 

 
 

Figure 5: End-to-end attack scenario. 
 
 

ware interrupts generated by the ambient light sensor itself, 
or hardware interrupts generated by the display panel, as it 
automatically adjusts its brightness. This side-channel leak- 
age means that cache-based attacks can detect the presence 
of a user in front of the computer, an item of information 
which is highly desirable to advertisers. 

 End-to-End Privacy Attacks 

 Motivation 

Modern browsers implement a private or incognito mode, 
which allows users to carry out sensitive online activities. 
When private browsing mode is enabled, the web browser 
does not disclose or collect any cookies, and disables web 
cache entries or other forms of local data storage. One 
browser executable that is considered extremely secure is the 
Tor Browser: a specially-configured browser bundle, built 
around the Firefox codebase, which is designed to block 
most privacy-sensitive APIs and connect to the Internet only 
through the Tor network. Since private browsing sessions 
disable certain network functionality, and do not retain the 
login credentials of the current user, they are cumbersome 
for general-purpose use. Instead, users typically run con- 
currently standard browsing sessions and private browsing 
sessions, side-by-side, on the same computer, either as two 
open windows belonging to the same browser process, or as 
two independent browser processes. 

We assume that one of the websites opened during the 
standard browsing session is capable of performing our Java- 
Script cache attack (either by malicious design, or  inciden- 
tally via a malicious banner ad or other  affiliate  content 
item). As  Figure  5  illustrates,  we  show  how  an  attacker 
can detect which websites are being loaded in the victim’s 
private browsing session, thus compromising her privacy. 

 

 Experimental Setup 

Our measurements were carried out on an Intel Core i7- 
2667M laptop, running Mac OS X 10.10.3.  The attack code 
was executed on a standard browsing session, running on the 
latest version of Firefox (37.0.2), while the private browsing 
session ran on both the latest version of Safari (8.0.6) and 
the Tor Browser Bundle (4.5.1). The system was connected 
to the WiFi network of Columbia University, and had all non-
essential background tasks stopped. To increase our 
measurement bandwidth, we chose to filter all hardware- 
related events. We began our attack with a simple training 
phase, in which the attacker measured the cache sets that 
were idle when the user was touching the trackpad, but not 
moving his finger. 
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Figure 6: Memorygrams for three popular websites (Facebook, Google, Yahoo). 

 
In each experiment, we opened the private-mode brows- 

ing window, typed the URL of a website to the address bar, 
and allowed the website to load completely. During this op- 
eration, our attack code collected memorygrams that rep- 
resent cache activity. The memorygrams had a temporal 
resolution of 2ms, and a duration of 10 seconds for Safari 
private browsing and 50 seconds for the higher-latency Tor 
Browser. We collected a total of 90 memorygrams for 8 out 
of the top 10 sites on the web (according to Alexa ranking; 
May 2015). To further reduce our processing load, we only 
saved the mean activity of the cache sets over time, result- 
ing in a 5000-element vector for each Safari measurement 
and a 25000-element vector for each Tor measurement. A 
representative set of the Safari memorygrams is depicted in 
Figure 6 (note that the memorygrams shown in the figure 
were manually aligned for readability; our attack code does 
not perform this alignment step). 

Next follows the classification step, which is extremely 
simple. We calculated the mean absolute value of the Fourier 
transforms for each website’s memorygrams (discarding the 
DC component), computed the absolute value of the Fourier 
transform for the current memorygram, and then output the 
label of the closest website according to the l2 distance. 

We performed no other preprocessing, alignment, or mod- 
ification to the data. In each experiment, we trained the 
classifier on all traces but one, and recorded the label out- 
put by the classifier for the missing trace. We expected that 
multiple memorygrams would be difficult to align, both since 
the attacker does not know the precise time when browsing 
begins, and since network latencies are unknown and may 
change between measurements. 

We chose the Fourier transform method, as it is not af- 
fected by time shifting and because of its resistance to back- 
ground measurement noise—as we discuss in  Section  6.3, 
our primary sources of noise were timing jitter and spurious 
cache activity due to competing processes. Both sources 
manifested as high-frequency additive noise in our memory- 
grams, while most of the page rendering activity was cen- 
tered in the low frequency ranges. We thus limit our detector 
to the low-pass components of the FFT output. 

 
 Results 

Table 2 (Safari) and Table 3 (Tor Browser) show the con- 
fusion matrices of our classifiers. The overall accuracy was 
82.1% for Safari and 88.6% for Tor. 

 

Classifier 

Output→, 
Ground 

Truth↓ 

(1) (2) (3) (4) (5) (6) (7) (8) 

Amazon (1) .8 - - - - - - .2 
Baidu (2) .2 .8 - - - - - - 

Facebook (3) - - .5 - - .5 - - 
Google (4) - - - 1 - - - - 
Twitter (5) - - - - 1 - - - 

Wikipedia (6) - - .2 - - .8 - - 
Yahoo (7) - - - - - - 1 - 

Youtube (8) - - - - .4 - - .6 
 

Table 2: Confusion matrix for FFT-based classifier 
(Safari Private Browsing). 

 
 
 
 

 
The longer network round-trip times introduced by the 

Tor network did not diminish the performance of our classi- 
fier, nor did the added load of background activities, which 
unavoidably occurred during the 50 seconds of each mea- 
surement. The classifier was the least successful in telling 
apart the Facebook and Wikipedia memorygrams. We the- 
orize that this is due to the fact that both websites load a 
minimal website with a blinking cursor that generates the 
distinct 2 Hz pulse shown in Figure 6. The accuracy of the 
detector can certainly be improved with more advanced clas- 
sification heuristics (e.g., timing the keystrokes of the URL 
as it is entered, characterizing and filtering out frequencies 
with switching noise). 

Our evaluation was limited to a closed-world model of the 
Internet, in which only a small set of websites was consid- 
ered, and where template creation was performed based on 
traces from the victim’s own machine. It is possible to justify 
this model for our specific attacker, who can easily carry out 
profiling on the victim’s machine by instructing it to load 
known pages via JavaScript while recording memorygrams. 
Nevertheless, it would still be interesting to scale up the 
evaluation to an open-world model,  where many thousands 
of websites are considered, and where the templates are cre- 
ated in a different time and place than the victim’s current  
browsing session [11]. 
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Table 3: Confusion matrix for FFT-based classifier 
(Tor Browser). 

 
Brand Hi-Res. 

Time 
Support 

Typed 
Arrays 

Support 

Worldwide 
Preva- 
lence 

Internet Explorer v10 v11 11.77% 
Safari v8 v6 1.86% 

Chrome v20 v7 50.53% 
Firefox v15 v4 17.67% 
Opera v15 v12.1 1.2% 
Total – – 83.03% 

 

Table 4: Affected desktop browsers: minimal ver- 
sion and prevalence [26]. 

 

6. DISCUSSION 

 Prevalence of Affected Systems 
Our attack requires a personal computer powered by an 

Intel CPU based on the Sandy Bridge, Ivy Bridge, Haswell 
or Broadwell micro-architecture. According to data from 
IDC, more than 80% of all PCs sold after 2011 satisfy this 
requirement. We furthermore assume that the user is using 
a web browser that supports the HTML5 High Resolution 
Time API and the Typed Arrays specification. Table 4 notes 
the earliest version at which these APIs are supported for 
each common browser, as well as the proportion of global 
Internet traffic coming from such browser versions, accord- 
ing to StatCounter measurements (January 2015) [26]. As 
the table shows, more than 83% of desktop browsers in use 
today are affected by the attack we describe. 

The effectiveness of our attack depends on being able to 
perform precise measurements using the JavaScript High 
Resolution Time API. While the  W3C  recommendation  of 
this API [16] specifies that the a high-resolution timestamp 
should be “a number of milliseconds accurate to a thou- 
sandth of a millisecond”, the maximum resolution of  this 
value is not specified, and indeed varies between browser 
versions and OSes. During our tests, we discovered that the 
actual resolution of this timestamp for Safari on Mac OS X 
was on the order of nanoseconds, while IE for Windows had 
a 0.8s resolution. Chrome, on the other hand, offered a 
uniform resolution of 1s on all OSes we tested. 

Since the timing difference between a single cache hit and 
a cache miss is on the order of 50ns (see Figure 3), the profil- 
ing and measurement algorithms need to be slightly modified 
to support systems with coarser-grained timing resolution. 

170 
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200 250 300 350 400 450 500 550 
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Figure 7: L3 cache hit times show a 3-level gradua- 
tion (Haswell i7-4960HQ). 

 

 
In the profiling stage, instead of measuring a single cache 

miss, we repeat the memory access cycle multiple times to 
amplify the time difference. We have used this observation 
to successfully perform cache profiling on versions of the 
Chrome browser whose timing resolution was limited5. For 
the measurement stage, we cannot amplify a single cache 
miss, but we can take advantage of the fact that code ac- 
cesses typically invalidate multiple consecutive cache sets 
from the same page frame. As long as at least 20 out of the 
64 cache sets, in a single page frame, register a cache miss, 
our attack is successful even with s time resolution. 

The attack we propose can also be applied to mobile de- 
vices, such as smartphones and tablets. It should be noted 
that the Android Browser supports High Resolution Time 
and Typed Arrays starting from version 4.4, but at the time 
of writing the most recent version of iOS Safari (8.1) did not 
support the High Resolution Time API. 

 

 Micro-architecture Insights 
Despite the fact that our attack was implemented in a 

restricted, high-level language, it provides a glimpse into 
extremely low-level elements of the victim’s machine. As a 
consequence, it is affected by the minute design choices made 
by  Intel  CPU  architects.    As  stated  by  Aciiçmez  [1],  two 
concepts can affect the functional behavior of a cache: the 
mapping strategy and the replacement policy. The former 
determines which memory locations are mapped to each set 
in the cache, while the latter determines how the cache set 
will be modified after a cache miss. 

We noticed different behaviour in the mapping strategy of 
the systems we surveyed, especially in the choice of the slice 
index of each memory address. In the processors we tested, 
the sets of the LLC are divided into slices, with each cache 
slice located in hardware with close proximity to one of the 
CPU’s cores. All of the slices are interconnected via a ring 
buffer, allowing all cores to access cache entries in all slices. 

 

5It should be noted that Chrome has an additional feature 
called Portable Native Client (PNaCl), which offers direct 
access to the native clock_gettime() API. 

C
a

ch
e

 h
it

 l
a

te
n

cy
 (

n
s)

 

Classifier 

Output→, 
Ground 

Truth↓ 

(1) (2) (3) (4) (5) (6) (7) (8) 

Amazon (1) 1 - - - - - - - 
Baidu (2) - 1 - - - - - - 

Facebook (3) - .2 .8 - - - - - 
Google (4) - - - 1 - - - - 
Twitter (5) - - - .17 .83 - - - 

Wikipedia (6) - - .33 - .17 .5 - - 
Yahoo (7) - - - - - - 1 - 

Youtube (8) - - - - .4 - - 1 
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Cache sets are thus indexed first using the slice index, and 
next with the set index within the respective slice. 

While the work of Hund et al. [10] showed that on Sandy 
Bridge CPUs the slice index is only a  function  of  high- 
order bits of the physical address, Liu et al. [14] suggested 
that lower-order bits are also considered by newer micro- 
architectures. We confirmed this by measuring the cache hit 
of each of the cache sets we were able to profile on a quad- 
core Haswell processor. In such a system there are three 
possible times for an L3 cache hit. L3 cache entries located 
in a slice associated with the current core are the fastest to 
access. Hits on cache entries located in the two slices which 
are a single core’s distance from the current core should be 
slightly slower, since the entry has to travel across a single 
hop on the ring buffer. Finally, hits on cache entries lo- 
cated in the slice which is two cores away from the current 
core should be the slowest to access, since the entries travel 
across two hops on the ring buffer. If lower-order address 
bits are used in the selection of the cache slice, we would 
expect to see a variation in the cache hit times for addresses 
within the same physical memory page. Figure 7 shows that 
this behaviour was indeed observed on a Haswell-generation 
CPU, confirming the suggestion of Liu et al. 

The timing difference between the worst-case cache hit 
(which has to travel across two hops on the ring buffer) and 
a cache miss is still enough for Algorithm 1 to operate with- 
out modifications. However, an attacker can use this insight 
concerning LLC slices to his operative advantage. For ex- 
ample, two processes running on the same system can use 
this measurement to discover whether they are running on 
the same core or not, by comparing cache hit timings for 
the same cache sets. This can allow an attacker to option- 
ally transition from LLC cache attacks to L1 cache attacks, 
which are considered to be more sensitive and simpler to 
carry out. More importantly, once the mapping of physi- 
cal addresses to cache sets is reverse engineered on newer 
systems, this behaviour will allow low-privilege processes to 
infer information about the physical addresses of their own 
variables, reducing the entropy of several types of attacks 
such as ASLR derandomization [10]. 

When investigating the cache replacement policy, we no- 
ticed that the CPUs we surveyed transitioned between two 
distinct replacement policies. Modern Intel CPUs usually 
employ a least-recently-used (LRU) replacement policy [23], 
where a new entry added to the cache is marked as the 
most recently used, and is thus the last to be replaced in 
the case of future cache misses. In certain cases, however, 
these CPUs can transition to the bimodal insertion policy 
(BIP) policy, where the new entry added to the cache is 
marked most of the times as the least recently used, and 
is thus the first to be replaced in the case of future cache 
misses. In our measurements we noticed that Sandy Bridge 
CPUs kept using the LRU policy throughout our experi- 
ments. On Ivy Bridge processors, however, we witnessed 
situations where some sets operated in LRU mode and some 
in BIP mode. This suggests a “set dueling” mechanism, in 
which the two policies are compared in real time to examine 
which generates less cache misses. Haswell and Broadwell 
CPUs switched between policies with high frequency, but we 
could not locate regions in time where both policies were in 
effect (in different cache sets). 

We hypothesize that Haswell (and newer) CPUs do not 
use simple set dueling, but rather a different method, to 
choose the optimal cache replacement policy. The choice of 
policy had a impact on our measurements, since the BIP 
policy makes the priming and probing steps harder. Prim- 
ing is more difficult since sequentially accessing all entries 
in the eviction set does not bring the cache into a known 
state—some of the entries used by the victim process may 
still be in the cache set. As a result, the probing step may 
spuriously indicate that the victim has accessed the cache set 
in a certain time period. The combined effect of these two 
artifacts is an effective low-pass filter applied to the memo- 
rygram, which reduces our temporal resolution by a factor of 
up to 16. To avoid triggering the switch to BIP, we designed 
our attack code to minimize the amount of cache misses it 
generates in benign cases, both by choosing a zig-zag access 
pattern (as suggested by Osvik et al. [19]), and by actively 
pruning our measurement data set to remove overly active 
cache sets. 

 

 Noise Effects 
Sources. Side-channel attacks have to deal with three 

general categories of noise [18]: electronic, switching, and 
quantization (or measurement). Electronic  noise  refers  to 
the “thermal noise” which is inherent in any  physical  sys- 
tem. This source of noise is less  prevalent  in  our  attack 
setup due to its relatively low resolution. Switching noise 
refers to the fact that the measurements capture not only 
the victim’s secret information, but also other activities of 
the device under test, either correlated or uncorrelated to 
the measurement. In our specific case, this noise is caused 
by the spurious cache events due to background process ac- 
tivity, as well as by the cache activity of the attack code and 
the underlying JavaScript runtime itself. Quantization noise 
refers to the inaccuracies introduced by the measurement ap- 
paratus. In our specific case, this noise can be caused by the 
limited resolution of the JavaScript performance counter, or 
by low-level events such as context switches that occur while 
the measurement code is running. It should be noted that, 
with  the exception  of timer granularity,  all sources of noise 
in our system are additive (i.e., noise will only cause a mea- 
surement to take longer). 

Effects. There are two main elements of our attack that 
can be impacted by noise. The first is the cache profiling pro- 
cess, in which the eviction sets are created. The second is the 
online step, in which the individual cache sets are probed. 
Noise during the profiling process, specifically during steps 
(1.b) and (1.e) of Algorithm 1, will cause the algorithm to 
erroneously include or exclude a memory address from an 
eviction set. Noise during the online step will cause the at- 
tacker to erroneously detect activity on a cache set when 
there is none, or to erroneously associate cache activity to a 
victim process when in fact it was caused by another source. 
Interestingly, one formidable source of switching noise is the 
measurement process itself—since a memorygram contains 
millions of measurements collected over a short period of 
time, creating it has a considerable impact on the cache. 

Mitigations. To quantify the prevalence of measurement 
noise in our system, we measured the proportion of cache 
misses in an area with no cache activity. We discovered that 
around 0.3% of cache hits were mis-detected as cache misses 
due to timing jitter, mostly because  off context switches in 
the middle of the measurement process. 
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Such events are easy to detect since the time that is re- 
turned is more than the OS multitasking quantum (10ms on 
our system). However, since we want our measurement loop 
to be as simple as possible, we did not apply this logic in 
our actual attack. To deal with the limited resolution of the 
timer on some targets, we could either use the workarounds 
suggested in the previous section or find an alternative form 
of time-taking that does not rely on JavaScript’s built-in 
timer API. Timing jitter was generally not influenced by 
CPU-intensive background activities. However, memory- 
intensive activities, such as file transfers or video encoders 
caused a large amount of switching noise and degraded the 
effectiveness of our attack considerably. To deal with the 
switching noise caused by our measurement code, we spread 
out our data structures so that they occupied only the first 
64 bytes of every 4KB block of memory. This guaranteed 
that at most 1/64 of the cache was affected by the construc- 
tion of the memorygram. 

Another source of noise was Intel’s Turbo Boost feature, 
which dynamically varied our CPU clock speed between 2.5 
GHz and 3.2 GHz. This changed the cache hit timings on 
our CPU by a large factor between measurements, making 
it difficult to detect cache misses. To mitigate this effect, 
we periodically estimated the cache hit time (by measuring 
the access time of a cache set immediately after priming it), 
and measured cache misses against this baseline. 

 

 Additional Attack Vectors 
The general mechanism we presented in this paper can be 

used for many purposes other than the attack we presented. 
We survey a few interesting directions below. 

KASLR Derandomization.  Kernel control-flow hijack- 
ing attacks often rely on pre-existing code deployed by the 
OS. By forcing the OS kernel to jump to this code (for in- 
stance by exploiting a memory corruption vulnerability that 
overwrites control data), attackers can take over the entire 
system [12]. A common countermeasure to such attacks is 
the Kernel Address Space Layout Randomization (KASLR), 
which shifts kernel code by a random offset, making it harder 
for an attacker to hard-code a jump to kernel code in her 
exploits. Hund et al. showed that probing the LLC can help 
defeat this randomization countermeasure [10]. 

We demonstrated that LLC probing can also be carried 
out in JavaScript,  implying that the attack of Hund et al. 
can also be carried out by an untrusted webpage. Such at- 
tacks are specially suited to our attacker model, because 
of drive-by exploits that attempt to profile and then infect 
users with a particular strain of malware, tailored to be ef- 
fective for their specific software configuration [22]. The 
derandomization method we present can be used for boot- 
strapping a drive-by exploit, dividing the attack into two 
phases. In the first phase, an unprivileged JavaScript func- 
tion profiles the system and discovers the address of a kernel 
data structure. Next, the JavaScript code connects to the 
web server again and downloads a tailored exploit for the 
running kernel. 

Note that cache sets are not immediately mappable to 
virtual addresses, especially in the case of JavaScript where 
pointers are not available. An additional building block used 
by Hund et al., which is not available to us, is the call to 
sysenter with an unused syscall number. This call resulted 
in a very quick and reliable trip into the kernel, allowing 
efficient measurements [10]. 

Secret State Recovery. Cache-based key recovery has 
been widely discussed in the scientific community and needs 
no justification. In the case of cache attacks in the browser, 
the adversary may be interested in discovering the user’s 
TLS session key, any VPN or IPSec keys used by the sys- 
tem, or perhaps the secret key used by the system’s disk 
encryption software. There are additional secret state ele- 
ments that are even more relevant than cryptographic keys 
in the context of network attacks. One secret which is of 
particular interest in this context is the sequence number 
in an open TCP session. Discovering this value will enable 
traffic injection and session hijacking attacks. 

 
 
 
 

 Countermeasures 
The attacks described in this paper are possible because 

of a confluence of design and implementation decisions start- 
ing at the micro-architectural level and ending at the Java- 
Script runtime: the method of mapping a physical memory 
address to cache set; the inclusive cache micro-architecture; 
JavaScript’s high-speed memory access and high-resolution 
timer; and finally, JavaScript’s permission model. Mitiga- 
tion steps can be applied at each of these junctions, but each 
will impose a drawback on the benign uses of the system. 

On the micro-architectural level, changes to the way physi- 
cal memory addresses are mapped to cache lines will severely 
confound our attack, which makes great use of the fact that 
6 out of the lower 12 bits of an address are used directly to 
select a cache set. Similarly, the move to an exclusive cache 
micro-architecture, instead of an inclusive one, will make it 
impossible for our code to trivially evict entries from the 
L1 cache, resulting in less accurate measurements. These 
two design decisions, however, were chosen deliberately to 
make the CPU more efficient in its design and use of cache 
memory, and changing them will exact a performance cost 
on many other applications. In addition, modifying a CPU’s 
micro-architecture is far from trivial, and definitely impos- 
sible as an upgrade to already deployed hardware. 

On the JavaScript level, it seems that reducing the resolu- 
tion of the high-resolution timer will make our attack more 
difficult to launch.  However, the hi-res timer was created 
to address a real need of JavaScript developers for applica- 
tions ranging from music and games to augmented reality. A 
possible stopgap measure would be to restrict access to this 
timer to applications that gain the user’s consent (e.g., by 
displaying a confirmation window) or the approval of some 
third party (e.g., downloaded from a trusted “app store”). 

An interesting approach could be the use of heuristic pro- 
filing to detect and prevent this specific kind of attack. Just  
like the abundance of arithmetic and bitwise instructions 
used by Wang et al. to indicate the existence of crypto- 
graphic primitives [28], it can be noted that the various 
(measurement) steps of our attack access memory in a very 
particular pattern. Since modern JavaScript runtimes al- 
ready scrutinize the runtime performance of code as part 
of their profile-guided optimization mechanisms, it could be 
possible for the JavaScript runtime to detect profiling-like 
behavior from executing code, and modify its response ac- 
cordingly (e.g., by jittering the high-resolution timer or dy- 
namically moving arrays around in memory). 
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7. CONCLUSION 
We demonstrated how a micro-architectural, side-channel 

cache attack, which is already recognised as an extremely 
potent attack method, can be effectively launched from an 
untrusted webpage. Instead of the traditional cryptanalytic 
applications of the cache attack, we instead showed how user 
behaviour can be successfully tracked using our method(s). 
The potential reach of side-channel attacks has been ex- 
tended, meaning that additional classes of systems must be 
designed with side-channel countermeasures in mind. 
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