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ABSTRACT 
The scalable maintenance of cache coherence in multicore 

processors is a significant difficulty. Directory-based protocols 

reduce bandwidth usage and enable scaling by tying sharer core 

information to every cache block. The directory itself adds 

considerable area and energy overheads as the number of cores 

and cache sizes grow. In this study, we propose SPACE, a 

directory architecture based on identifying and displaying the 

subset of sharing patterns found in an application. SPACE makes 

use of the fact that a lot of memory regions are accessed by the 

same group of processors throughout an application, leading to a 

few sharing patterns that happen frequently. The bit vector 

representing the processors who share the block is the sharing 

pattern of a cache block. Each cache block's sharing pattern is 

decoupled by SPACE, who stores them in a distinct directory 

table. Several cache lines with the same sharing configuration all 

lead to the same directory table entry. Also, when a table's 

capacity is reached, designs that are identical to one another are 

According to our findings, SPACE generally performs within 2% 

of that of a traditional directory. Dynamically collating 

comparable patterns eliminates more bogus sharers than coarse 

vector directories do. Additionally, despite the Maximum 

directory table size being O(P) and requiring a pointer per cache 

line with a size of O, our testing shows that a tiny directory table 

(256–512 entries) may handle the access patterns in many 

applications (log2P). At 16 processors, SPACE uses 44% of the 

space of a typical directory, whereas at 32 processors, it uses 

25%. 

 

Categories and Subject Descriptors: B.3.2 [Memory Struc- 

tures]: Design Styles—Shared memory; C.1.2 [Processor Archi- 

tectures]:Multiprocessors; 

General Terms: Design, Experimentation, Performance 

Keywords: Directory coherence, Cache coherence, Multicore scal- 

ability, SPACE. 

 

1. INTRODUCTION 
Multicore processors continue to provide a hardware coherent 

memory space to facilitate effective sharing across cores. As the 

number of cores on a chip increases with improvements in tech- 
 

 

. 

nology, implementing coherence in a scalable manner remains an 

increasing challenge. Snoopy and broadcast protocols forward co- 

herence messages to all processors in the system and are bandwidth 

intensive. They also have inherent limitations in both performance 

and energy and it is unlikely that they will be able to effectively 

scale to large core counts. 

Directory-based protocols are able to support more scalable co- 

herence by associating information about sharer cores with every 

cache line. However, as the number of cores and cache sizes in- 

crease, the directory itself adds significant area and energy over- 

heads. The conceptually simple approach is to adapt a full map 

sharer directory [6] and associate a P-bit vector (where P is the 

number of processors) with every cache line. Unfortunately, this 

makes the directory size dependent on the number of shared cache 

lines (M) and the number of processors, resulting in a directory size 

that is O(M P). 
One possible alternative is shadow tags, which are used in many 

current processors including Niagara2 [17]. Essentially, each pri- 

vate L1 cache’s address tags are replicated at a logically central- 

ized directory structure. On every coherence access, the shadow 

tags are consulted to construct sharer information dynamically — 

this is a highly associative and energy intensive lookup operation. 

Tagless lookup [19] was recently proposed to optimize the shadow 

tag space by compressing the replicated L1 cache tags. This ap- 

proach uses a set of bloom filters to concisely summarize tags in 

each cache set. The energy intensive associative lookup needed by 

shadow tags is thus replaced with bloom filter tests. 

Various other approaches have been proposed to reduce the area 

overheads of a full bit map directory, including the use of a di- 

rectory cache [1, 15], a compressed sharer vector [8, 9, 16], and 

pointers [2, 11]. Directory caches restrict the blocks for which pre- 

cise sharing information can be maintained simultaneously. Com- 

pressed sharer vectors fix the level of imprecision at design time — 

all cache lines suffer from imprecision. Pointers incur significant 

penalty (due to the need to revert to either software or broadcast 

mode) when the number of sharers exceeds the number of pointers. 

They are inefficient at representing a large number of sharers. 

In this paper, we optimize the directory by recognizing and rep- 

resenting the sharing patterns present in an application. The sharing 

pattern of a cache line is the bit vector representing the processors 

that share the block. Our approach, SPACE (Sharing PAttern based 

CoherencE) takes advantage of the observation that many memory 

locations in an application are accessed by the same set of proces- 

sors, resulting in a few sharing patterns that occur frequently. A 

full map directory is highly inefficient and essentially duplicates 

the same sharing pattern across many cache lines. SPACE decou- 

ples the sharing pattern from each cache line and holds them in a 

separate directory table. Multiple cache lines that have the same 

sharing pattern point to a common entry in the directory table. The 

directory area overhead of SPACE is thus O(M log2K), where K 

is the logical number of entries in the directory table, assuming that 
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M is significantly larger than P so that this factor dominates the area 

of the directory table itself (which is O(K P)). SPACE simplifies 

the design by using a constant number of entries in the directory ta- 

ble (fixed at design time). The major challenge with this approach 

is how SPACE accommodates new sharing patterns when the di- 

rectory table capacity is exceeded. Unlike directory caches that 

default to broadcast for these cases, SPACE degrades gracefully by 

dynamically collating patterns that are similar to each other into a 

single sharer pattern. 

We evaluate SPACE using a full system simulator. Our re- 

sults show that overall, SPACE is within 2% of the performance 

of a conventional full map directory. Our experiments comparing 

SPACE against coarse vector [9] approaches demonstrates that dy- 

namically collating similar patterns achieves significant reduction 

in false sharers (almost completely eliminates it). Our experimen- 

tation also reveals that a small directory table (256 entries for a 16 

core chip, 512 entries for a 32 core chip) can handle the access 

patterns in many applications. Empirical results indicate that the 

number of directory table entries is typically O(P). Hence, the area 

required for the pointers per cache line is O(log2P), which results 

in increasing savings with SPACE with increasing number of pro- 

cessors — SPACE occupies 44% the area of a full map directory 

at 16 processors, and 25% at 32 processors. 

 

2. BACKGROUND 
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Figure 1: Baseline tiled multicore architecture. L2 Full Map: sharer 

vectors associated with cache line. 

 

 
In this work, we study the organization of directories in the con- 

text of a tiled multicore shown in Figure 1. Each tile in the multi- 

core consists of a processor core, private L1 (both I and D) cache, 

and a bank of the globally-shared last-level L2 cache. Coherence 

at the L1 level is maintained using an invalidation-based directory 

protocol and directory entries are maintained at the home L2 bank 

of a cache line. 

Full bit map directories [6] are an attractive approach that was 

first proposed for multiprocessors but can be extended to maintain 

coherence in multicores with an inclusive shared cache. The shar- 

ing cores are represented as a bit-vector associated with each cache 

block, with each bit representing whether the corresponding core 

has a copy of the block. Sharer information is accessed in parallel 

with the data. The main disadvantage of this approach is the area 

overhead. The capacity of the shared L2 cache exceeds the total 

capacity of the L1 caches and unfortunately the directory size is 

directly correlated with the number of cache lines in the L2. 

To ensure that the coherence mechanism scales to large mul- 

ticores, a directory design is required that makes effective use of 

space, maintains accurate information to ensure that coherence traf- 

fic does not waste bandwidth, and provides a complexity-effective 

implementation. We believe these goals can be attained by exploit- 

ing the sharing patterns prevalent in applications. The key observa- 
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Figure 2: Maximum number of sharing patterns in any snapshot. (16 

processor system. Other system parameters specified in Table 1a.) 

 

tion is that applications demonstrate few unique sharing patterns, 

which are stable across time, and many cache lines essentially dis- 

play the same sharing pattern. Here, we use the term sharing pattern 

to refer to the group of processors accessing a single location. In 

the next section, we describe how we use sharing pattern locality 

to decouple the directory from the cache sizes and number of cores 

and provide a scalable coherence framework. 

 

3. SHARING PATTERN-BASED DIREC- 

TORY COHERENCE (SPACE) 

 Sharing Patterns 
The sharing pattern of a cache line can be represented as a P-bit 

vector (where P is the number of processors), with each bit speci- 

fying if the corresponding processor has a copy of the block. The 

maximum number of sharing patterns possible is 2P. A conven- 

tional directory will assume that each cache line has a unique pat- 

tern and that this pattern could be any one of 2P. Hence, each cache 

line has an associated P-bit sharing pattern. We make an observa- 

tion about sharing pattern locality — many cache lines in the appli- 

cation are accessed by the same set of processors, which essentially 

leads to the same sharing bit-vector pattern. Because of application 

semantics and the regular nature of inter-thread sharing, it is also 

likely for a system to repeatedly encounter the same set of patterns. 
Figure 2 shows the maximum number of patterns encountered 

in an application during any snapshot of its execution (examined 

every 100,000 instructions) for a 16 processor system 1. Although 

the maximum possible number of patterns is 65536 at 16 proces- 

sors, we can see that the actual number of patterns observed in our 

application suite did not exceed 1800. We can also see that the 

commercial workloads (Apache and SPECjbb) tend to have many 

different patterns, while scientific workloads (SPLASH2 [18]) have 

a limited number of sharing patterns with regular data accesses. 

This relatively small number of patterns present in the applications 

compared to the total number of possible patterns suggests an op- 

portunity to design a directory that holds the sharing patterns that 

occur without assuming that each cache line demonstrates a unique 

pattern. 
 

 

1Except for Apache and SPECjbb, these numbers are only for application 
data and instructions, with the goal of demonstrating individual application 
behavior. Since Apache and SPECjbb make a considerable number of sys- 
tem calls, we include operating system references since we cannot separate 
those made only on behalf of the application. 
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(b) SPECjbb 
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Figure 3: Number of cache blocks for each of N sharers. 
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Figure 4: Cumulative distribution of references over sharing patterns. X axis represents the patterns, ordered by frequency of access. Y axis is the 

cumulative distribution of the references accessing the patterns. 

 
 

An important metric of interest is the distribution of cache lines 

with the same sharing patterns. If there exists good sharing pat- 

tern locality (many cache lines display the same sharing pattern), it 

would increase the effectiveness of a directory based on common 

sharing patterns. A single entry can describe the sharing pattern of 

many cache lines. 

Figure 3 shows the degree of sharing across two different snap- 

shots of three different applications. Each bar in the histogram rep- 

resents the number of cache lines with patterns with a certain num- 

ber of processors sharing the cache line. Each cluster in the graph 

represents a snapshot of the sharing information of cached blocks. 

We took these snapshots at regular intervals (1000 transactions for 

Apache and SPECjbb, 1 million instructions for SPLASH2) and 

observed that snapshots remained steady over time. Here, we only 

show two snapshots. We observe that private accesses are the domi- 

nant sharing pattern, exhibited by over 70% of the blocks in Apache 

and SPECjbb, and 90% of the blocks in Barnes (other SPLASH2 

workloads demonstrate similar behavior). 

We also observed that the distribution of the blocks across the 

patterns remains relatively stable. This indicates that while a given 

cache line’s sharing pattern may change, overall, the application 

accesses cache lines in a similar manner. Note that the histogram 

tails off sharply, indicating that the number of sharers per cache line 

is small on average. 

Our next experiment studies the frequency with which the pat- 

terns in the directory are referenced. The sharing pattern of a cache 

line is referred to only on two occasions: downgrades, when a copy 

is requested by a processor and an L1 has a modified version, and 

invalidations, when a processor wants to modify the location and 

the sharer copies need to be invalidated. In addition, the sharing 

pattern is also updated when a copy of a read-shared line is re- 

quested. Figure 4 shows the number of patterns that get frequently 

referenced. In all these applications, more than 80% of the total 

references goes to the 200 most frequently accessed patterns. This 

indicates that imprecisely maintaining the sharers for many shared 

cache lines (e.g., read-only) will not hurt performance. The linear 

curve segment in Apache indicates that the number of references 

are uniformly distributed across all of the frequently accessed pat- 

terns. 

Overall, we can draw the following important conclusions: 

1. Many cache lines have a common sharing pattern and the 

number of the patterns that are frequently referenced is small. 

This implies that a directory that supports a few sharing pat- 

terns can be sufficiently accurate to save bandwidth. 

2. The number of patterns that a directory needs to support for a 

real application is 40 (Apache, SPECjbb) - 800 (Water) 

less than the maximum number of sharing patterns. 

3. The number of patterns in the directory will remain relatively 

stable during the execution. This suggests that the total num- 

ber of sharing patterns that a directory has to support for a 

given applications can be fixed. 

4. Finally, there is significant variation between the applications 

with regards to the maximum number of sharing patterns : 

75 (Water) - 1700 (Apache) (see Figure 2. This suggests 

that a directory sized based on the worst-case (1700) would 

waste significant space for some applications. On the other 
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hand a directory with fewer entries would be space efficient 

but would need an effective way of dynamically managing 

patterns when there are no free entries. We describe one such 

scheme in the next section. 

 Key Idea 
As compared to a conventional full map directory [16] that 

stores the sharing patterns along with the cache line, SPACE de- 

couples the sharing pattern from each cache line and holds them in 

a separate directory table. Multiple cache lines that have the same 

sharing pattern point to a common entry in the directory table. With 

the directory table storing the patterns, each cache line includes a 

pointer whose size is proportional to the number of entries in the 

directory. We organize the directory table as a two-dimensional 

structure with NDir.ways ways and NDir.sets. The size of the direc- 

tory table in our current design is fixed (derived from the applica- 

tion characteristics in Section 3.1) and is entirely on-chip. Hence, 

when the table capacity is exceeded, we have a dynamic mecha- 

nism to collate patterns that are similar to each other into a single 

entry. 

 
SPACE Directory 

Cache Lines SPACE Poin 

  
 

 

Log2 ( NDir. entries ) 

Figure 5: SPACE directory organization. NDir.entries = NDir.sets NDir.ways 
represents the number of patterns in the directory. Ref. count indicates 
reference counter associated with each sharing pattern. 

 
 

In this section, we describe our directory implemented on a 
multicore with 16 processors, with 64KB private L1 caches per 
core, and a 16MB shared inclusive L2 cache. The conventional 
full map directory design would include an entry for each cache 
line for a total of 262144 (16MB/64 byte) entries. Figure 5 il- 

lustrates the SPACE approach. We have a table with NDir.entries 

(NDir.ways NDir.sets) entries, each entry corresponding to a shar- 

ing pattern, which is represented by a 16-bit vector. For each 
cache line in the L2 cache, we replace the sharing vector with a 

log2(NDir.entries) bit pointer to indicate the sharing pattern. Ev- 

ery time the sharer information is needed, the data block tag is first 
accessed, and the associated pointer is used to index into and get 
the appropriate bitmap entry in the directory table, which repre- 
sents the sharer bitmap for the cache line. 

Notice that SPACE essentially decouples the directory organi- 
zation from the caches and can optimize the size of the directory 
based on various constraints (e.g., energy, area, and/or latency). If 
space is not the main constraint, we can choose to have a large 
NDir.entries, all the way to the extreme case of using a unique entry 

for each cache line (emulating the baseline full map approach). A 

SPACE design with NDir.entries = 1 essentially defaults to a broad- 

cast protocol. With on-chip directory area being an important con- 
straint and with applications demonstrating regular sharing pat- 
terns, we investigate SPACE designs with varying NDir.entries (see 

Section 5). 

 SPACE Implementation 
The main structure required to incorporate SPACE in a multi- 

core is the directory table that stores the sharing patterns. We or- 
ganize the sharing pattern table as a set-associative structure with 

NDir.ways ways and NDir.sets sets to support a total of NDir.ways ∗ 

NDir.sets sharing patterns. A pointer in each LLC’s (last level 

cache’s) cache line tag identifies the set and way containing the 
cache line’s sharing pattern and is used to index the directory table 

for a sharing pattern lookup. This section describes how SPACE 
inserts entries into the directory table, how patterns are dynami- 
cally collated when there are no free entries, and how entries are 
removed from the table. 

Inserting a new pattern 

When a cache line is accessed and a sharing pattern changes 

(or appears for the first time), the pattern needs to be inserted in 

the directory table. Once a free entry is found in the directory ta- 

ble, the set index and way are used by the cache line to access the 

specific entry. The key challenge is to determine where in the set- 

associative directory table the new sharing pattern should be stored. 

Intuitively, the hash function that calculates the set index has to be 

unbiased so as to not increase pollution in any given set. With 

SPACE, we also require that similar patterns map to the same set 

so as to enable better collation of entries when the protocol runs out 

of free directory entries. 

To satisfy these two seemingly contradictory goals we use a 
simple encoding scheme: we encode the full sharer bit-vector into 
a compressed bit vector of fewer bits as shown in Figure 6, with 
each bit standing for sharers existing in the specific cluster. For 
instance, for a multicore with 16 cores in a 4x4 mesh and with 

NDir.sets=16, the 16-bit sharing vector will be compressed to a 4-bit 

vector, each bit corresponding to whether a sharer exists in one of 

the four 2x2 clusters. Then the compressed log2(NDir.Sets) bit vec- 

tor will be used to index into the directory table. This process is 
illustrated in Figure 6. 

The main advantage of this hashing function is that it consid- 

ers all the bits in the sharing vector and removes bias towards any 

specific subset of the processors. Since sharing pattern variations 

within a cluster map to the same set, it also enables us to perform 

effective collation of patterns (when there are no free patterns avail- 

able) — extra coherence messages are limited to within the same 

cluster. 

Since private and globally-shared (all processors cache a copy) 

patterns appear to be common patterns across all the applications, 

SPACE dedicates explicit directory indices for these P + 1 patterns 

(where P is the number of processors). Hence, for lines modified 

by a specific processor (―M‖ state), SPACE will represent the pro- 

cessor accurately, which also helps with the implementation of the 

coherence protocol (see Section 3.4). Note that these entries do not 

need to be backed by physical storage, since their decoded patterns 

are fixed and known at design time. 

 

 

 

 

 

 

 

 

 

 
 

Figure 6: Inserting a pattern into the directory. 
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Merging with existing pattern 

A key challenge that a fixed size directory needs to deal with is 

the appearance of new patterns in the application when the direc- 

tory is already completely filled. When the pattern is added to the 

directory, SPACE searches all the ways in the particular set-index 

for a matching pattern. If there exists a matching entry, SPACE will 

simply provide the cache line with a pointer to this entry. 

In SPACE, when the incoming sharing pattern maps to a set 

with no free entries, it is merged with one of the existing patterns 

in the set. Cache lines already pointing to the entry can continue 

to use the sharing pattern specified although it is no longer precise. 

SPACE does try to ensure that such merging minimizes the pollu- 

tion of the existing entry. We achieve this by determining the ham- 

ming distance of the incoming pattern to all the existing patterns 

in the set. This distance is the number of bit positions in which the 

incoming pattern differs from the existing pattern, and indicates the 

number of extra false sharers that would be caused by the merging. 

After determining this distance by an XOR function, the incom- 

ing pattern will merge with the existing pattern with least hamming 

distance (minimal false sharers) using the simple OR operation. 

This novel technique of merging sharing patterns ensures that 

existing cache lines that point to the entry will suffer minimal per- 

formance penalty because of the extra sharer bits. This is one of the 

key contributions of the SPACE design: when the directory runs 

out of space, SPACE will dynamically collate sharing patterns sim- 

ilar to each other. In comparison, a sparse directory does not con- 

sider an application’s sharing patterns when compressing entries 

and uses a static approach based on clusters of processors. 

Removal of a stale pattern 

Finally, the last challenge that needs to be addressed is to ensure 

that entries in the directory are re-usable once no cache block has 

the sharing pattern in the entry. Recycling entries by removing stale 

patterns is vital for SPACE, because the system would otherwise 

fall back to broadcast with new patterns continually merging with 

stale patterns in the limited entries. 

SPACE elects to use a simple scheme of reference counting to 

detect when an entry becomes stale. A counter is associated with 

each entry in the directory. This counter is incremented when a new 

cache line starts pointing to the entry and is decremented when a 

cache line pointing to the entry changes its pointer (either the cache 

line was evicted or it changed its sharing pattern). The entry is re- 

claimed when the counter reaches zero. For simplicity, we assume 

that the counter includes log2M bits to deal with the worst case 

when all the M cached lines have the same pattern. The overhead 

of these counters itself is a small fraction of the overall area and 

—- with a 512-entry SPACE directory and a 64MB L2 cache, the 

counter bits only consumes 0.1% of the overall space consumption. 

Alternatively, if a smaller reference counter size is used, in case of 

saturation, additional cache lines could use additional ways in the 

set or default to broadcast. 

 Protocol Support for SPACE 
An interesting challenge that SPACE introduces is that it is pos- 

sible for the directory to provide an inaccurate list of sharers to 

the coherence protocols. This occurs when SPACE merges sharing 

patterns conservatively due to lack of space. Note that SPACE’s 

inaccuracy will at most cause false positives (indicate processors 

which are not actual sharers) but not false negatives (miss an ac- 

tual sharer). Similar imprecision also exists in the existing sparse 

directory designs but SPACE performs an important optimization 

that resolves the case for the modified state. SPACE keeps the pri- 

vate access sharing pattern locked down and ensures that the single 

sharer is accurately provided to the coherence protocol. The coher- 

ence protocol’s action in this case does not have to change. This 

is a notable improvement over previous approaches [19], which in- 

troduced additional protocol complexity to deal with imprecision 

in this situation. The only inaccuracy the coherence protocol needs 

to deal with is false-positive sharers for which invalidations will be 

forwarded. This can be handled with an acknowledgment of in- 

validation sent by a false sharer even if it does not have the cache 

block. False-positive sharer invalidation is also only incurred when 

the number of sharing patterns exceeds the directory capacity (or 

incurs conflicts). 

 Centralized or Tiled Directory Table 
In tiled multicores as the one discussed in Section 2, there is 

an interesting design choice for SPACE: bank and distribute a frac- 

tion of the directory sharing pattern table to each tile or maintain 
a centralized table for the whole chip. Distribution works well in 
terms of latency without an increase in area overhead if the sharing 
patterns across tiles are disjoint. However, with a line-interleaved 

LLC (last level cache), overlap of sharing patterns is highly likely. 
A centralized table would thus save area, since to support Npatterns 

sharing patterns, a centralized directory would require Npatterns di- 

rectory entries, while a tiled directory would in the worst case re- 
quire Npatterns per tile. 

Interestingly, comparing the overheads of tiled versus central- 
ized SPACE directories is dominated by the pointers in the cache 

line. For both the tiled case and the centralized case, to support 

Npatterns requires log2(Npatterns) per cache line. In a 16-processor 

multicore, the area overhead of the centralized-SPACE is only 1% 
smaller than the tiled-SPACE with a 512-entry pattern directory ta- 
ble. The centralized-SPACE does impose significant latency since 
each cache bank has to communicate over the network to initiate 

a directory lookup. The overheads of this directory access penalty 
appeared to have a significant impact on performance and in this 
paper, we focus on investigating the tiled-SPACE design. 

 Area Overheads 
The area overhead for SPACE includes two main components 

(1) the pointers to the directory entry associated with each cache 
line and (2) the sharing bit-vectors in the directory itself. Con- 
sider a system that has M cache lines and P cores.   Let Npatterns 

be the number of sharing patterns in the application. A conven- 
tional full map directory associates a P bit pointer with each cache 
line and consumes M P bits. With SPACE, the pointers associated 
with each cache line requires log2Npatterns and for M cache lines 

consumes M log2Npatterns bits. The directory table itself is a 

Npatterns P bit array. Overall, to achieve better space efficiency 

than the conventional directory, the following condition has to be 

satisfied: M P > M  log2Npatterns  + Npatterns  P. The directory 

can only have as many patterns as the number of cached blocks 
and this value is also bounded by the number of patterns possi- 
ble with a P-bit vector. Hence, the maximum value for Npatterns is 

MIN(2P, M). 
In our implementation of SPACE (see Figure 5), there is an ad- 

ditional log2M reference count bits per table entry. We include this 

overhead in Figure 7(a) and (b) to show SPACE’s storage require- 

ments compared to the traditional full bit vector directory design 

with varying L2 sizes for two different processor configurations. 

In the case of 16 cores and a 64MB L2 cache (see Figure 7(a)), 

SPACEs’ directory will have less storage overhead comparing to 

the full map directory if it supports less than 42000 patterns. 

The maximum possible patterns in this configuration is limited by 

the number of processors to 65536 (Min (65536,1024*1024)) — 

SPACE needs one 16-bit vector per cache line for the pointer to 
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Figure 7: SPACE’s area overhead compared to a full map directory. X axis is the number of patterns in the directory. (a) and (b) present the 

overhead varying the L2 size at a fixed number of cores (16 and 64 respectively). Each line represents a specific configuration of L2. (c) presents the 
overhead varying the number of cores while keeping the L2 size/core constant. The curves flat-line (or terminate) when they reach the maximum 

possible number of sharing patterns possible in the system, which is MIN(2P, M). 

 
 

represent all the patterns, which is exactly the same as the per cache 

line vector size in full map. Even in this worst case, the extra over- 

head SPACE is paying is simply the size of the directory table, 

which is a small fraction of the overall L2, 0.2% of a 128MB L2 

and 0.4% of a 64MB L2. In the 64 processor multicore, the max- 

imum number of patterns that would need to be supported is lim- 

ited by the number of cache lines, M (MIN(264, M)). As long as 

the maximum number of patterns required by an application is less 

than 2.5 105, SPACE will have a smaller area overhead than the 

conventional directory. 
As discussed in Section 3.1, most applications require the di- 

rectory to maintain a small number of patterns varying between 

75 – 1700. Interestingly, in this range, for multicores in the near 

future (64-256 cores), the number of cache lines in the shared 

cache M >> Npatterns and empirically, Npatterns << 2P. Overall, 

in SPACE, the overhead of the pointers associated with each L2 

cache line is the dominant overhead since M log2Npatterns >> 
Npatterns (P + log2M). To study the properties of such a system, 

we study the overheads of SPACE varying the number of cores 

while keeping the cache size / core constant. Figure 7(c) demon- 

strates that at 1000 entries (X axis start), SPACE requires 60% of 

the area when compared to a full map directory for 16 cores, and 

20% for 64 cores. Figure 7(c) also shows that at a large number of 

entries (not required by our applications) the directory table itself 

becomes a large fraction of the overall area overhead. The curves 

are all terminated when they reach the maximum possible number 
of sharing patterns possible in the system, which is MIN(2P, M). 

Note that the size of the sharing vector will also grow linearly 

with respect to the number of processors in the system (P). As a 
result, in the conventional full map directory the percentage of the 
whole cache used as the directory will grow linearly, and does not 
scale well with the number of cores. For the SPACE design, as we 

will show in Section 5, with the per cache line pointer being the 
dominant overhead, the size of the pointer will grow sub-linearly 
with respect to P since log2Npatterns bits are needed per cache 

line, and Npatterns grows linearly with P according to our empirical 

data. SPACE is therefore a more scalable approach to directory 
design for multicore platforms. 

 

4. RELATED WORK 
There have been primarily three different approaches for imple- 

menting the directory, (1) Shadow tag, which maintain a copy of 

the address tags of each L1 cache and probes these tags to con- 

struct the sharing vector, (2) Full map, which associates the sharer 

bit vector with the cache line in the shared level, and (3) Directory- 

cache, which stores the sharing information for a subset of the 

cache lines. Shadow tags are conceptually simple and replicate 

the private L1’s address tags for each processor at a logically cen- 

tralized directory structure. While shadow tags work well for cur- 

rent designs (e.g., Niagara2 [17]), which have a small number of 

cores and small L1s, they are challenging to implement. There are 

area and energy penalties for organizing and accessing a tag table 

with NL1 sets NL1   ways   NCores entries and associatively search- 

ing NL1 ways NCores on each directory reference. Most recently, 

Tagless-Lookup [19] optimized shadow tags by using a bloom filter 

to conservatively represent the address tags of all the ways in an L1 

cache set. Tagless-lookup uses multiple independent bloom filters 

to eliminate false positives. Each bucket in the bloom filter holds 

a sharing vector, which represents a conservative sharing pattern 

(false positives only) for addresses that map to that bucket. It opti- 

mizes the size of the shadow table down to NL1 sets NCores entries, 

and has an empirical saving of 2 compared to the base shadow tag 

approach. The tradeoff between SPACE and Tagless-lookup is one 

of area versus dynamic energy. SPACE has higher area overheads 

due to the pointer needed per L2 cache line, while tagless’s area is 

proportional to the L1 cache size (much smaller than the L2). Simi- 

lar to shadow tags, Tagless-lookup requires higher dynamic energy 

to lookup the bloom filters and dynamically construct the shar- 

ing pattern on each directory reference. With the tagless lookup, 

each directory reference requires a lookup of multiple independent 

bloom filters. Also, bloom filters are known to be a challenge to de- 

sign [20] since false positive rates scale sub-linearly with the filter 

size. 

Full map directories [6] can be used to primarily target multi- 

core chips with inclusive shared caches. Essentially, since a line at 

the L1 cache level is included at the shared level (L2 in our base- 

line system), a bit vector is directly associated with the shared level 

cache line. This provides an efficient representation for shared lines 

since it only uses a single address tag to represent the cache line 

and represents the sharer core using one bit per core — an over- 

head of T+NCores bits. Furthermore, the directory information is 

accessed along with the data access and this simplifies the mech- 

anism needed to update and read the directory information. The 

major challenge with this approach is that typically a shared cache 

is much larger than the total capacity of the L1s and hence the ca- 

pacity requirements are greater than the shadow tag approach. For 

example, for an Intel core 2 duo [10] (with 32KB private D-cache 

and 2MB shared L2) the shadow tags approach would consume 

48*512*2 bits while the full map approach would consume 32 * 
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× 1024 * 2 bits. The full map approach consumes 1.33 more area 

than the shadow tag approach. 

Coarse sharer vectors [9, 16], sharer pointers [2, 7, 11], and seg- 

mented sharer vectors [8] all change the encoding of the sharer 

map to represent (a subset of the) sharers more compactly. Such 

designs, however, can introduce significant false-positives in the 

sharer maps and/or represent only a limited number of sharers pre- 

cisely and efficiently, incurring significant penalties when there is 

a mismatch between the sharing pattern and the hardware encoding 

scheme. 

Directory caches [1, 15] seek to optimize the space by holding 

sharing information for only a subset of the total number of cached 

blocks. This introduces a high latency penalty for blocks that can- 

not be represented in the directory. The coherence protocol either 

has to invalidate all the cached copies or default to broadcast in this 

situation. Since each directory cache entry is used by a single cache 

line, the cache may be filled with identical sharing patterns, mak- 

ing space utilization inefficient. Previous research [1] has proposed 

the coupling of a small on-chip directory cache with a much larger 

in-memory directory cache. This requires coherence protocol ex- 

tensions to support an off-chip directory structure and pathological 

cases can cause some cache lines to suffer long latencies. 

 Our Approach: SPACE 
In many ways, SPACE’s directory table is similar to a directory 

cache and tries to optimize for the common case. SPACE, how- 

ever, focuses on frequently needed sharing patterns and exploits the 

overall sharing trends in the application to minimize space while 

directory caches track commonly accessed cache lines. Compared 

to directory caches in which each entry represents the pattern of a 

unique cache block, SPACE’s pattern directory improves the uti- 

lization of every entry. Each entry represents the information for 

multiple cache blocks (possibly all the cache blocks) in the shared 

cache. SPACE achieves this by eliminating the address tags and 

using pointers in the shared cache to explicitly map a location 

to a given pattern entry. This permits effective use of each pat- 

tern entry since the entry is no longer associated with one specific 

cache block. Furthermore, when the pattern table has no free space, 

SPACE dynamically collates the blocks’ sharing pattern with a sim- 

ilar pattern leading to a conservative expression that gradually in- 

creases the possibility of false-positive sharers without defaulting 

to the extreme measures (evicting or broadcasting) of the direc- 

tory cache. SPACE has area overhead similar to the coarse vec- 

tor approach, while keeping the network utilization comparable to 

the full map approach. Our analytical evaluation and empirical ex- 

periments reveal that we can attain performance comparable to the 

baseline full map approach while requiring much less area. 

 

5. PERFORMANCE EVALUATION 

 Experiment Setup 
To evaluate our proposed SPACE design, we conduct our exper- 

iments on a Simics-based [12] full system execution-driven simula- 

tor, which models the SPARC architecture. For cache and memory 

simulation, we use Ruby from the GEMS toolset [13]. Our baseline 

is a 16-tile multicore with private L1 caches and a 16-way shared 

inclusive L2 cache. The multiple tiles are connected with a 4x4 

mesh interconnect (for the 16-tile case). For the baseline coherence 

protocol, we use a non-uniform-shared L2 (L2S) MSI directory co- 

herence protocol. For the SPACE design, each tile also contains a 

segment of the pattern directory table. We charge a 2 cycle penalty 

(averaged across lookups and updates) for each SPACE directory 

access. The cache lines in a particular tile can only use entries 

from the SPACE directory associated with the tile. Table 1a shows 

the parameters of our simulation framework. 

For the network modeling, we use GEMS’ interconnect model. 

We employ a 4x4 mesh network with virtual cut-through routing. 

The link width is 16 bytes and can transmit 16 bytes/cycle. We 

simulate two forms of packets: 8-byte control packets for coher- 

ence messages and 72-byte payload packets for the data messages. 

We use a wide range of workloads, which include commercial 

server workloads [4] (Apache and SPECjbb2005), scientific ap- 

plications (SPLASH2 [18]), and graph mining (Graphmine [5]). 

We also include two microbenchmarks, migratory and producer- 

consumer, with specific sharing patterns. Table 1b lists all the 

benchmarks and the inputs used in this study. The table also in- 

cludes the maximum number of access patterns for each appli- 

cation, which can be correlated with the performance of a given 

SPACE directory size. 

We compare against the following coherence designs: 

Full Map Directory (FULL) 

In this system, a 16 bit sharer vector is associated with each 

cache line and accurately specifies if a particular processor holds a 

copy of the cache line. In our base configuration, there are a total of 

1M cache lines in the L2, leading to an overall directory overhead 

of 2MB. 

Coarse Bit Map Directory (COARSE-8) 

A potential solution to the directory space is to represent sharing 

at a coarser granularity. Each cache line is associated with an 8-bit 

sharer vector, with each bit representing if a block is cached in 

any core of a 2-core cluster. The area overhead of the 8-bit vector 

directory is exactly 50% of FULL. We demonstrate that COARSE’s 

simple encoding mechanism leads to many false positives. 

Broadcast (BCAST) 

In this scheme, we simulate a form of ordered broadcast similar 

to the AMD Hammer [3]. A request is sent from the L1 cache to the 

home L2 slice before being forwarded to all tiles. The broadcast 

design is representative of an extreme design point in which the 

coherence protocol does not keep any sharer information. Note 

that in our baseline the inclusive shared L2 will supply the data for 

read accesses when the L2 copy is up to date. 

BroadcastM (BCAST-M) 

BCAST-M performs a simple optimization over BCAST: it 

keeps extra information at each L2 cache line when an L1 has a 

modified copy of the line. Maintaining a pointer to any one of 16 

processors requires associating a 4-bit pointer with the cache line. 

BCAST-M also represents an extreme design point for SPACE, 

since in our design, the smallest SPACE directory requires owners 

to be represented accurately. 

SPACE-N 

We also study a range of SPACE design points varying the per- 

tile directory table from 32 — 512 entries. We fix the number of 

sets in the table at 16 and vary the associativity. 

 How accurate is SPACE? 
In our first set of experiments, we estimate the accuracy of shar- 

ing patterns maintained in SPACE. In a directory protocol, coher- 

ence operations refer to the sharer information to forward coher- 

ence messages and the accuracy of tracking sharers can have a 

significant performance, network utilization, and energy impact. 

Overall, we find that SPACE-256 has close to perfect accuracy, 

while COARSE-8 has a significant number of false-sharer specifi- 

cations, in all cases specifying at least 1 false sharer (see Figure 8). 

In terms of area overhead, SPACE and COARSE-8 are comparable 
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(a) Target System parameters 
 

Processors 

Processor 16 cores, 3.0 GHz, In-order 

Cache parameters 

Private L1 
L1 Latency 
Shared L2 

 

L2 latency 

64KB, 2-way, 64-byte blocks 
2 cycles 
64MB, 16-way, 64-byte blocks, 
4MB per tile 
2 cycles tag, 14 cycles data 

Interconnect 

Topology 
Links 

4x4 mesh 
2 cycles, 1.5GHz, 128-bit width 

Main Memory 

4GB, 300 cycles 
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Table 1: Evaluation Framework 

(b) Benchmark Suite 
 

Benchmark Simulated problem size 
Max. # 

sharing patterns 
Network 

Utilization 
Invalidation 

messages rate 

Apache 80000 Tx ffwd, 2000 Tx warmup, 
and 3000 Tx execution 

1657 11.6% 2.3% 

JBB2005 350K Tx ffwd, 3000 Tx warmup, 
and 3000 Tx execution 

1054 8.5% 2.5% 

Barnes 8K particles; run-to-completion 707 3.3% 2.3% 

Cholesky lshp.0; run-to-completion 364 2.6% 2.0% 

FFT 64K points; run-to-completion 104 3.7% 1.4% 

LU 512x512 matrix,16x16 block; 
run-to-completion 

249 1.9% 1.6% 

MP3D 40K molecules; 15 parallel steps 181 6.1% 20.3% 

Ocean 258x258 ocean 208 5.7% 1.8% 

Radix 550K 20-bit integers, radix 1024 169 5.0% 1.7% 

Water 512 molecules; run-to-completion 75 2.7% 0.2% 

GraphMine 340 chemical compounds, 24 
atoms, 66 atom types, and 4 
bonds; 300 nodes exploration 

736 2.0% 2.3% 

Migratory 512 exclusive access cache lines 63 0.6% 24.5% 

ProdCon 2K shared cache lines and 8K pri- 
vate cache lines 

82 1.5% 24.9% 

 

0.5 
 

0 
Apache Barnes   Chol. FFT     Graph     JBB LU Migr.   MP3D  Ocean   Prod.   Radix   Water 

Figure 8: Average number of false positive bits per reference to the directory. 

 
 

at 16 processors — 50% the size of FULL. Even SPACE-128 will 

have fewer false positive bits than the 8-bit vector directory in all 

the applications — SPACE-128 is 44% the size of FULL. The re- 

sults confirm that SPACE’s sharing pattern collation mechanism is 

an effective technique that adds false sharers incrementally, com- 

pared to COARSE-8, which coarsely represents all sharing patterns 

and introduces many false sharers. 

SPACE also makes effective use of increased directory space. 

We show that SPACE uses the increase in directory entries to ac- 

curately represent the sharing patterns in the system. Interestingly, 

with 32 entries, SPACE has a significant number of false positives 

varying between 1-2 false positives per directory reference for most 

applications. SPACE-256 corresponds to 8 more entries than 

SPACE-32, and translates to a 62% increase in area compared to 

SPACE-32. This indicates that SPACE also has an effective sweet 

spot : it requires a certain number of directory entries to effectively 

eliminate false positives and reducing the entries any further sees 

diminishing returns (less area reduction and noticeable increase in 

false positives). 

An important operation in SPACE is merging two patterns when 

the directory is out of free entries (see Section 3.3). We use a hash 

function to index the incoming pattern into the directory and iden- 

tify a set of entries (those with the same hash index) to compare 

with. This indexing function hence directly influences the pollution 

of entries in a given set, and this pollution manifests itself as false- 

positive bits in the sharer pattern. Here, we compare the encoding 

we described in Section 3.3 with a more simple direct hash func- 

tion. In the Direct index (DIRECT) we use the lower-order proces- 

sor bits in the sharing pattern as the index. We compare it against 

the baseline SPACE approach, which uses an encoding technique 

to cluster sharing bits corresponding to all processors when gen- 

erating the encoding function. To illustrate DIRECT and SPACE; 

consider the sharing patterns [0000 0010 1100 0011] and [1111 

1010 1010 0011] that need to be mapped to a directory with 16 sets 

(4-bit index). DIRECT maps both sharing patterns to the same set 

[0011] while SPACE maps [0000 0010 1100 0011] [0111] and 

[1111 0010 1100 0011] [1111]. Clearly, while the level of pol- 

lution in each case is a function of the access pattern distribution, 

the penalty for messages caused by false positives when the cores 

are in the same cluster as in SPACE may be smaller. 

Figure 8 shows the effect of this pollution: with the same num- 

ber of entries (256), DIRECT-256 introduces significantly more 

false sharers and performs similar to SPACE-64. Since near- 

est neighbor sharing can improve application performance, it also 

tends to be more common. If adjacency in the bit pattern repre- 

sents distance, merging patterns/cores that are likely to share data 

anyway results in fewer false positives. DIRECT-256 essentially 

wastes ' 192 entries. All the SPACE designs make effective use of 
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the space by distributing the entries and effectively merging similar 

patterns in a set in the absence of free entries. 

The consequences of false positives in the directory are a func- 

tion of the number of accesses to the entry. Figure 9 shows that for 

all applications evaluated, SPACE accurately indicates sharers for 

over 70% of directory references with just 128 entries at 16 pro- 

cessors. Some applications like MP3D, FFT, and Water experience 

100% accuracy since they have a very small number of sharing 

patterns. Apache, Barnes, and SPECjbb have the lowest accuracy 

because of their relative large number of irregular sharing patterns. 

5.4 Performance Comparison 
In this section, we study the execution time of applications in 

SPACE. We show that the latency overheads on coherence mes- 

sages due to false sharers are minimal when SPACE has a moderate 

number of entries (128 — 256) and its performance is comparable 

to FULL (see Figure 10(b)). Here, we also study the effect of a 

decoupled SPACE directory on performance. Compared to FULL 

in which the sharer information is accessed in parallel with the data 

access, in SPACE only the directory pointer can be accessed in par- 

allel with the data. Further overhead is required to index into the 

SPACE directory (Section 5.5 talks about access time for various 

SPACE directory sizes). We model this as a 2 cycle access penalty 
1 
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(averaged over lookups and updates). 

Comparing FULL to BCAST and BCAST-M, FULL has the 

best performance since each cache line has the exact sharing in- 

formation. BCAST performs (up to 12.7%) worse than FULL, but 

BCAST-M’s optimization for private cache lines (the dominant ac- 

cess pattern, see Figure 10(b)) improves performance significantly. 

The traffic overheads in our regular mesh network has little impact 

on performance for the microbenchmarks (Prod. and Migr.) since 

the overall network utilization is low — BCAST and BCAST-M 

perform similar to FULL. With SPACE, the dominant overhead for 

such applications is the directory access penalty that SPACE adds 

Figure 9: False sharer distribution in directory references at 16 pro- 

cessors. SPACE directory has 128 entries. 

 

 
5.3 Interconnect Traffic 

Here, we demonstrate that the false sharers in SPACE do not 

result in a significant increase in on-chip network traffic. The 

bandwidth overheads compared to FULL directly correlate with 

the small false positive bits per reference discussed in the previous 

section. Bandwidth utilization would mainly be influenced by the 

invalidation requests that are forwarded to the false sharers caused 

by processor write requests and L2 evictions. In Table 1b, we list 

the number of invalidation messages measured in each application. 

Figure 10(a) shows the bandwidth overhead for the different co- 

herence systems. The bandwidth utilized is measured as the to- 

tal number of flits sent over the physical network. Results show 

that BCAST (which does not use any sharer information) incurs 

more than 10% overhead for most applications and in the worst 

case not including microbenchmarks (MP3D) sends up to 2.7 the 

number of flits required by FULL. SPACE with 128 entries will 

increase the overhead to an average of 0.8% over FULL. Inter- 

estingly, SPACE can exploit even fewer entries (32-64) for many 

applications (OCEAN, Radix, Water). For Apache, SPECjbb, and 

Barnes, which have a large number of sharing patterns (see Ta- 

ble 1b), SPACE-128 limits the bandwidth overhead to 1% and 

6% compared to FULL. SPECjbb, which experienced many traf- 

fic hot spots in the mesh network, is a challenging workload for 

SPACE and it needs 256-512 entries to match the performance 

of FULL. SPACE demonstrated significant benefits over BCAST- 

M, which demonstrates that tracking sharer information for shared 

cache lines has benefits over merely identifying private data. Note 

that while SPACE-32 is comparable in area overheads to BCAST- 

M2, it makes use of the extra indices to track information for more 

patterns than just private accesses. 

 

 
2Both require log2P + 1 pointers per cache-line. BCAST-M requires 

log2P + 1 because it needs log2P bits to track the processor that modified 
the cache line and 1 bit to indicate if the line defaults to broadcast. 

to all coherence requests that reference the directory. SPACE per- 

forms marginally worse (1% and 0.5%) than BCAST and BCAST- 

M in such applications. 

In applications with higher network utilization, which include 

Apache and SPECjbb, the network traffic saved by SPACE plays a 

dominant role. SPACE-128 performs better than both BCAST and 

BCAST-M. SPACE-256 and SPACE-512 have performance com- 

parable to FULL. Overall, the performance of SPACE with 128 en- 

tries only suffers minimal performance penalty compared to FULL 

— slowdown less than 2% for all the applications except SPECjbb 

(7.5% for SPECjbb). SPACE-128 is '44% the area of FULL. 

 Area and Energy Metrics 

Table 2: CACTI estimates for various SPACE directory sizes (The read 

energy includes access of the directory pointer and the directory table 
entry.) 

 

Configuration Access 
Time(ns) 

Read 
Energy(fJ) 

SPACE-32 0.11 654 
SPACE-64 0.13 706 
SPACE-128 0.14 753 
SPACE-256 0.17 838 
SPACE-512 0.18 1482 
Tagless-lookup [19] 0.34 6381 

Shadow tags 0.48 43016 

 
 

Table 3: Area overhead for various SPACE directory sizes 
 

SPACE dir. size 32 64 128 256 512 

Area overhead 
(relative to FULL) 31.35% 37.70% 44.14% 50.78% 57.81% 

 
We use CACTI 6.0 [14] to model energy, delay, and area at a 

45nm process technology. Table 2 shows the estimated parameters 

of the pattern directory table at each tile. With the small size of the 

pattern directory table in all the configurations, table lookup can be 

accomplished in one CPU cycle and the area overhead is less than 

0.01mm2. The dynamic energy numbers include the per-cache-line 

directory pointer. We also compare the SPACE parameters against 

the tagless-lookup and shadow tags designs. Compared to shadow 
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(a) Interconnect traffic(measured in flits) 

 

 
 

1.1 
 
 

1 

 

0.9 

 

0.8  
Apache Barnes   Chol. FFT     Graph     JBB LU Migr.   MP3D  Ocean   Prod.   Radix   Water 

(b) Performance 

Figure 10: Interconnect traffic and performance of various directory designs normalized to FULL. 

 

 
tags, which construct the sharing pattern dynamically on each ac- 

cess with associative lookups, SPACE achieves significant dynamic 

energy savings. The SPACE directory also consumes less dynamic 

energy compared to the tagless design. 

The area overhead incurred by SPACE relative to FULL is 

shown in Table 3. The overhead includes both the directory ta- 

ble and the pointer per cache line, which is the dominant overhead 

in SPACE. 

Dynamic energy consumption (in fJ) per access 
with 64KB private L1 and 16MB shared L2 

L1 L2 (BCAST) L2 (SPACE-256) L2 (FULL) 

19252 134921 135455 135989 
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Figure 11: Dynamic energy of the memory subsystem normalized to 

FULL. Table shows the per-access energy used for the various compo- 
nents used to drive the model. 

 

 
The total dynamic energy consumption of the memory subsys- 

tem is calculated based on L1 and L2 access statistics, flit traf- 

fic in the on-chip network, and the SPACE directory accesses. 

As Figure 11 shows, SPACE consumes energy similar to FULL 

while BCAST consumes 1.05 — 2.7 more energy than either. 

BCAST consumes energy in the network and for probing L1 caches 

on many coherence accesses. 

 Scalability 
The efficiency of SPACE implicitly depends on the number of 

sharing patterns frequently used and the number of cache lines 

mapping to a sharing pattern. Both of these properties vary with the 

machine parameters. To study the general applicability of SPACE, 

we study it under three different multicores: 8C (8 core CMP, 8 MB 

L2), 16C (16 core CMP, 16 MB L2) and 32C (32 core CMP, 32 MB 

L2). We also vary the size of the SPACE directory between 4 P — 

32 P. We evaluate its scalability using application execution time 

and interconnect traffic as the metrics. 

Figure 12 shows that SPACE with a limited number of entries 

(SPACE-64 for 8C, SPACE-128 for 16C, and SPACE-256 for 32C) 

consistently performs similar to FULL and has performance penal- 

ties within 2% for all multicore configurations we tested. The net- 

work traffic demonstrates a similar trend. SPACE’s performance 

tends towards FULL when it is able to accurately maintain the pat- 

terns present in an application when it runs on a particular config- 

uration. Interestingly, the minimum number of entries required by 

an effective SPACE system to deliver performance comparable to 

FULL appears to be 8 P (for the applications we tested). This 

suggests that the number of frequently referenced patterns tend to 

be linearly correlated with P. With this trend, SPACE needs K P 

entries to efficiently support a system with P cores, where K is 

a small constant (our experiments seem to suggest K=8). With 

K P entries in the table, each cache line needs a pointer of size 

log2(P) + log2(K) (If K = 8, then log2(k)=3). Now consider the 

case with the total number of shared cache lines as M. When FULL 

is implemented in such a system, the total overhead of the direc- 

tory is O(M ∗ P). With SPACE, the overhead of the pointers is 

O(M(log2P + log2K)) −→ O(Mlog2P). 

Comparison with Tagless-Lookup [19] and Shadow tags 

Figure 13 shows a comparison of the area overheads. Full map 

directory increases linearly with the number of cores. SPACE’s 

overheads are dominated by the pointers associated with each L2 
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the conventional directory structure does not scale in size and con- 

sumes a significant fraction of precious on-chip area. 

In this paper, we first investigate the sharing patterns in applica- 

tions. The sharing pattern of a location refers to the set of proces- 

sors accessing it. We demonstrate that many applications possess 

sharing pattern locality, i.e., there are a few unique patterns that 

are referenced frequently and many cache lines have a common 

sharing pattern. A conventional directory hence essentially stores 

duplicate copies of the same sharing patterns. We exploit this ob- 

servation and propose the SPACE approach, which leverages the 

Figure 12: Execution time and interconnect traffic for SPACE nor- 

malized to FULL. Each bar represents a specific SPACE directory size. 
SPACE-KP represents SPACE with K * P entries, where P is the num- 
ber of processors. X axis represents 3 different multicore systems: 8C 

(8 core CMP, 8 MB L2), 16C (16 core CMP, 16 MB L2) and 32C (32 
core CMP, 32 MB L2). Y axis represents the geometric mean of rela- 
tive execution time and interconnect traffic of all applications. 

 

cache line. SPACE does impose a constant factor overhead over 

tagless-lookup (and shadow tags); tagless-lookup improves over 

shadow tags by NL1 ways. Both tagless-lookup and shadow tags 

seek to represent the information only for lines cached in the L1; 

this provides notable area benefits over SPACE. The main advan- 

tage of SPACE is that it streamlines the access to the directory en- 

try when a cache block is accessed, thereby requiring less energy to 

access the sharing pattern. The pointers to the sharing pattern are 

accessed along with the L2 tag lookup and the directory table can 

be organized to require fewer comparators. Tagless-lookup (and 

shadow tags) require more energy-intensive table lookups on each 

cache access due to the highly associative comparators necessary to 

construct the sharing pattern dynamically. We believe SPACE’s de- 

sign is better suited to support large multicores. Overall, SPACE is 

8 and 52 more energy efficient than Tagless-lookup and shadow 

tags respectively (see Section 5.5 for a detailed quantitative com- 

parison). 

 

6. CONCLUSION 
Future generation multicores with a great many processors 

bring with it the challenge of effectively maintaining cache coher- 

ence. Directory-based protocols achieve performance scalability by 

accurately maintaining information about sharers. Unfortunately, 

sharing pattern commonality by completely decoupling the sharing 

patterns from the shared cache and storing only a pointer to the spe- 

cific pattern with each cache line. This permits all cache lines that 

have the same sharing pattern to point to a common pattern entry. 

We find that with a small number of entries in the pattern table, we 

can effectively support a large fraction of the directory references 

from cache lines: 128 — 256 entries for a 16 processor multicore 

and 256 — 512 entries for a 32 processor multicore. We show that 

SPACE can perform within 2% of a conventional full map direc- 

tory in spite of occupying only 44% at 16 processors and 25% at 

32 processors of the full map’s area. SPACE’s directory deals with 

space constraints by using a dynamic collation technique to merge 

patterns that are similar to each other. We demonstrate that this 

technique helps reduce network traffic due to false sharer bits with 

area overheads comparable to coarse-vector directories. 
A key challenge with the SPACE approach is the pointers re- 

quired per cache line in the shared cache. This leads to extra over- 
head compared to approaches such as tagless lookup [19], which 
store information only for lines in private caches. We believe that 
SPACE’s key insight of exploiting sharing pattern locality and in- 
troducing an extra level of indirection to store only the unique en- 
tries, is generally applicable. We plan to investigate hybrid ap- 
proaches between SPACE and tagless lookup [19]: combining tech- 
niques from SPACE to help eliminate redundant copies of sharing 
patterns with tagless lookup to eliminate the per LLC cache line 
overhead. 
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