
International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

99

'

∗

×

Sharing Pattern-based Directory Coherence for Scalability
on Many Cores

Mr.Manas Ranjan Behuria
1
*, Mr. Bijay Kumar Sahoo

2

1
*Assistant Professor,Dept. Of Computer Science and Engineering, NIT , BBSR
2
Assistant Professor,Dept. Of Computer Science and Engineering, NIT , BBSR

manasranjan@thenalanda.com*, bijaykumar@thenalanda.com

ABSTRACT
The scalable maintenance of cache coherence in multicore

processors is a significant difficulty. Directory-based protocols

reduce bandwidth usage and enable scaling by tying sharer core

information to every cache block. The directory itself adds

considerable area and energy overheads as the number of cores

and cache sizes grow. In this study, we propose SPACE, a

directory architecture based on identifying and displaying the

subset of sharing patterns found in an application. SPACE makes

use of the fact that a lot of memory regions are accessed by the

same group of processors throughout an application, leading to a

few sharing patterns that happen frequently. The bit vector

representing the processors who share the block is the sharing

pattern of a cache block. Each cache block's sharing pattern is

decoupled by SPACE, who stores them in a distinct directory

table. Several cache lines with the same sharing configuration all

lead to the same directory table entry. Also, when a table's

capacity is reached, designs that are identical to one another are

According to our findings, SPACE generally performs within 2%

of that of a traditional directory. Dynamically collating

comparable patterns eliminates more bogus sharers than coarse

vector directories do. Additionally, despite the Maximum

directory table size being O(P) and requiring a pointer per cache

line with a size of O, our testing shows that a tiny directory table

(256–512 entries) may handle the access patterns in many

applications (log2P). At 16 processors, SPACE uses 44% of the

space of a typical directory, whereas at 32 processors, it uses

25%.

Categories and Subject Descriptors: B.3.2 [Memory Struc-

tures]: Design Styles—Shared memory; C.1.2 [Processor Archi-

tectures]:Multiprocessors;

General Terms: Design, Experimentation, Performance

Keywords: Directory coherence, Cache coherence, Multicore scal-

ability, SPACE.

1. INTRODUCTION
Multicore processors continue to provide a hardware coherent

memory space to facilitate effective sharing across cores. As the

number of cores on a chip increases with improvements in tech-

.

nology, implementing coherence in a scalable manner remains an

increasing challenge. Snoopy and broadcast protocols forward co-

herence messages to all processors in the system and are bandwidth

intensive. They also have inherent limitations in both performance

and energy and it is unlikely that they will be able to effectively

scale to large core counts.

Directory-based protocols are able to support more scalable co-

herence by associating information about sharer cores with every

cache line. However, as the number of cores and cache sizes in-

crease, the directory itself adds significant area and energy over-

heads. The conceptually simple approach is to adapt a full map

sharer directory [6] and associate a P-bit vector (where P is the

number of processors) with every cache line. Unfortunately, this

makes the directory size dependent on the number of shared cache

lines (M) and the number of processors, resulting in a directory size

that is O(M P).
One possible alternative is shadow tags, which are used in many

current processors including Niagara2 [17]. Essentially, each pri-

vate L1 cache’s address tags are replicated at a logically central-

ized directory structure. On every coherence access, the shadow

tags are consulted to construct sharer information dynamically —

this is a highly associative and energy intensive lookup operation.

Tagless lookup [19] was recently proposed to optimize the shadow

tag space by compressing the replicated L1 cache tags. This ap-

proach uses a set of bloom filters to concisely summarize tags in

each cache set. The energy intensive associative lookup needed by

shadow tags is thus replaced with bloom filter tests.

Various other approaches have been proposed to reduce the area

overheads of a full bit map directory, including the use of a di-

rectory cache [1, 15], a compressed sharer vector [8, 9, 16], and

pointers [2, 11]. Directory caches restrict the blocks for which pre-

cise sharing information can be maintained simultaneously. Com-

pressed sharer vectors fix the level of imprecision at design time —

all cache lines suffer from imprecision. Pointers incur significant

penalty (due to the need to revert to either software or broadcast

mode) when the number of sharers exceeds the number of pointers.

They are inefficient at representing a large number of sharers.

In this paper, we optimize the directory by recognizing and rep-

resenting the sharing patterns present in an application. The sharing

pattern of a cache line is the bit vector representing the processors

that share the block. Our approach, SPACE (Sharing PAttern based

CoherencE) takes advantage of the observation that many memory

locations in an application are accessed by the same set of proces-

sors, resulting in a few sharing patterns that occur frequently. A

full map directory is highly inefficient and essentially duplicates

the same sharing pattern across many cache lines. SPACE decou-

ples the sharing pattern from each cache line and holds them in a

separate directory table. Multiple cache lines that have the same

sharing pattern point to a common entry in the directory table. The

directory area overhead of SPACE is thus O(M log2K), where K

is the logical number of entries in the directory table, assuming that

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

100

×

'

M is significantly larger than P so that this factor dominates the area

of the directory table itself (which is O(K P)). SPACE simplifies

the design by using a constant number of entries in the directory ta-

ble (fixed at design time). The major challenge with this approach

is how SPACE accommodates new sharing patterns when the di-

rectory table capacity is exceeded. Unlike directory caches that

default to broadcast for these cases, SPACE degrades gracefully by

dynamically collating patterns that are similar to each other into a

single sharer pattern.

We evaluate SPACE using a full system simulator. Our re-

sults show that overall, SPACE is within 2% of the performance

of a conventional full map directory. Our experiments comparing

SPACE against coarse vector [9] approaches demonstrates that dy-

namically collating similar patterns achieves significant reduction

in false sharers (almost completely eliminates it). Our experimen-

tation also reveals that a small directory table (256 entries for a 16

core chip, 512 entries for a 32 core chip) can handle the access

patterns in many applications. Empirical results indicate that the

number of directory table entries is typically O(P). Hence, the area

required for the pointers per cache line is O(log2P), which results

in increasing savings with SPACE with increasing number of pro-

cessors — SPACE occupies 44% the area of a full map directory

at 16 processors, and 25% at 32 processors.

2. BACKGROUND

CPU

L1$

L2

Tag

L2

Data

L2
Full
Map

Router

Figure 1: Baseline tiled multicore architecture. L2 Full Map: sharer

vectors associated with cache line.

In this work, we study the organization of directories in the con-

text of a tiled multicore shown in Figure 1. Each tile in the multi-

core consists of a processor core, private L1 (both I and D) cache,

and a bank of the globally-shared last-level L2 cache. Coherence

at the L1 level is maintained using an invalidation-based directory

protocol and directory entries are maintained at the home L2 bank

of a cache line.

Full bit map directories [6] are an attractive approach that was

first proposed for multiprocessors but can be extended to maintain

coherence in multicores with an inclusive shared cache. The shar-

ing cores are represented as a bit-vector associated with each cache

block, with each bit representing whether the corresponding core

has a copy of the block. Sharer information is accessed in parallel

with the data. The main disadvantage of this approach is the area

overhead. The capacity of the shared L2 cache exceeds the total

capacity of the L1 caches and unfortunately the directory size is

directly correlated with the number of cache lines in the L2.

To ensure that the coherence mechanism scales to large mul-

ticores, a directory design is required that makes effective use of

space, maintains accurate information to ensure that coherence traf-

fic does not waste bandwidth, and provides a complexity-effective

implementation. We believe these goals can be attained by exploit-

ing the sharing patterns prevalent in applications. The key observa-

1800

1600

1400

1200

1000

800

600

400

200

0

Figure 2: Maximum number of sharing patterns in any snapshot. (16

processor system. Other system parameters specified in Table 1a.)

tion is that applications demonstrate few unique sharing patterns,

which are stable across time, and many cache lines essentially dis-

play the same sharing pattern. Here, we use the term sharing pattern

to refer to the group of processors accessing a single location. In

the next section, we describe how we use sharing pattern locality

to decouple the directory from the cache sizes and number of cores

and provide a scalable coherence framework.

3. SHARING PATTERN-BASED DIREC-

TORY COHERENCE (SPACE)

 Sharing Patterns
The sharing pattern of a cache line can be represented as a P-bit

vector (where P is the number of processors), with each bit speci-

fying if the corresponding processor has a copy of the block. The

maximum number of sharing patterns possible is 2P. A conven-

tional directory will assume that each cache line has a unique pat-

tern and that this pattern could be any one of 2P. Hence, each cache

line has an associated P-bit sharing pattern. We make an observa-

tion about sharing pattern locality — many cache lines in the appli-

cation are accessed by the same set of processors, which essentially

leads to the same sharing bit-vector pattern. Because of application

semantics and the regular nature of inter-thread sharing, it is also

likely for a system to repeatedly encounter the same set of patterns.
Figure 2 shows the maximum number of patterns encountered

in an application during any snapshot of its execution (examined

every 100,000 instructions) for a 16 processor system 1. Although

the maximum possible number of patterns is 65536 at 16 proces-

sors, we can see that the actual number of patterns observed in our

application suite did not exceed 1800. We can also see that the

commercial workloads (Apache and SPECjbb) tend to have many

different patterns, while scientific workloads (SPLASH2 [18]) have

a limited number of sharing patterns with regular data accesses.

This relatively small number of patterns present in the applications

compared to the total number of possible patterns suggests an op-

portunity to design a directory that holds the sharing patterns that

occur without assuming that each cache line demonstrates a unique

pattern.

1Except for Apache and SPECjbb, these numbers are only for application
data and instructions, with the goal of demonstrating individual application
behavior. Since Apache and SPECjbb make a considerable number of sys-
tem calls, we include operating system references since we cannot separate
those made only on behalf of the application.

TILE TILE
0 1

TILE TILE
2 3

TILE TILE
4 5

TILE TILE
6 7

TILE TILE
8 9

TILE TILE
10 11

TILE TILE
12 13

TILE TILE
14 15

M
a

x
im

u
m

 n
u

m
b

e
r

o
f

p
a

tt
e

rn
s

B
a

rn
e

s

C
h

o
l.

F
F

T

L
U

M
P

3
D

O
c
e

a
n

R
a

d
ix

W
a

te
r

M
ig

r.

P
ro

d
.

G
ra

p
h

A
p

a
c
h

e

J
B

B

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

101

'

× ×

2000

1500

1000

500

0

12919 13212

Snapshot 1 Snapshot 2

(a) Apache

2000

1800

1600

1400

1200

1000

800

600

400

200

0

12103 12070

Snapshot 1 Snapshot 2

(b) SPECjbb

2000

1800

1600

1400

1200

1000

800

600

400

200

0

10911 10975

(c) Barnes

Figure 3: Number of cache blocks for each of N sharers.

100% 100% 100%

80% 80% 80%

60% 60% 60%

40% 40% 40%

20% 20% 20%

0%
0 50 100 150 200

Number of sharing patterns

(a) Apache

0%
0 50 100 150 200

Number of sharing patterns

(b) Specjbb

0%
0 50 100 150 200

Number of sharing patterns

(c) Barnes

Figure 4: Cumulative distribution of references over sharing patterns. X axis represents the patterns, ordered by frequency of access. Y axis is the

cumulative distribution of the references accessing the patterns.

An important metric of interest is the distribution of cache lines

with the same sharing patterns. If there exists good sharing pat-

tern locality (many cache lines display the same sharing pattern), it

would increase the effectiveness of a directory based on common

sharing patterns. A single entry can describe the sharing pattern of

many cache lines.

Figure 3 shows the degree of sharing across two different snap-

shots of three different applications. Each bar in the histogram rep-

resents the number of cache lines with patterns with a certain num-

ber of processors sharing the cache line. Each cluster in the graph

represents a snapshot of the sharing information of cached blocks.

We took these snapshots at regular intervals (1000 transactions for

Apache and SPECjbb, 1 million instructions for SPLASH2) and

observed that snapshots remained steady over time. Here, we only

show two snapshots. We observe that private accesses are the domi-

nant sharing pattern, exhibited by over 70% of the blocks in Apache

and SPECjbb, and 90% of the blocks in Barnes (other SPLASH2

workloads demonstrate similar behavior).

We also observed that the distribution of the blocks across the

patterns remains relatively stable. This indicates that while a given

cache line’s sharing pattern may change, overall, the application

accesses cache lines in a similar manner. Note that the histogram

tails off sharply, indicating that the number of sharers per cache line

is small on average.

Our next experiment studies the frequency with which the pat-

terns in the directory are referenced. The sharing pattern of a cache

line is referred to only on two occasions: downgrades, when a copy

is requested by a processor and an L1 has a modified version, and

invalidations, when a processor wants to modify the location and

the sharer copies need to be invalidated. In addition, the sharing

pattern is also updated when a copy of a read-shared line is re-

quested. Figure 4 shows the number of patterns that get frequently

referenced. In all these applications, more than 80% of the total

references goes to the 200 most frequently accessed patterns. This

indicates that imprecisely maintaining the sharers for many shared

cache lines (e.g., read-only) will not hurt performance. The linear

curve segment in Apache indicates that the number of references

are uniformly distributed across all of the frequently accessed pat-

terns.

Overall, we can draw the following important conclusions:

1. Many cache lines have a common sharing pattern and the

number of the patterns that are frequently referenced is small.

This implies that a directory that supports a few sharing pat-

terns can be sufficiently accurate to save bandwidth.

2. The number of patterns that a directory needs to support for a

real application is 40 (Apache, SPECjbb) - 800 (Water)

less than the maximum number of sharing patterns.

3. The number of patterns in the directory will remain relatively

stable during the execution. This suggests that the total num-

ber of sharing patterns that a directory has to support for a

given applications can be fixed.

4. Finally, there is significant variation between the applications

with regards to the maximum number of sharing patterns :

75 (Water) - 1700 (Apache) (see Figure 2. This suggests

that a directory sized based on the worst-case (1700) would

waste significant space for some applications. On the other

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Snapshot 1 Snapshot 2

P
e

rc
e

n
ta

g
e

 o
f

o
v
e

ra
ll
 r

e
fe

re
n

c
e

s

N
u

m
b

e
r

o
f

b
lo

c
k
s

P
e

rc
e

n
ta

g
e

 o
f

o
v
e

ra
ll
 r

e
fe

re
n

c
e

s

N
u

m
b

e
r

o
f
b

lo
c
k
s

P
e

rc
e

n
ta

g
e

 o
f

o
v
e

ra
ll
 r

e
fe

re
n

c
e

s

N
u

m
b

e
r

o
f

b
lo

c
k
s

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

102

ters
N Dir. ways Sharing Pattern

Ref.
Count

... ...

∗

∗

[|

hand a directory with fewer entries would be space efficient

but would need an effective way of dynamically managing

patterns when there are no free entries. We describe one such

scheme in the next section.

 Key Idea
As compared to a conventional full map directory [16] that

stores the sharing patterns along with the cache line, SPACE de-

couples the sharing pattern from each cache line and holds them in

a separate directory table. Multiple cache lines that have the same

sharing pattern point to a common entry in the directory table. With

the directory table storing the patterns, each cache line includes a

pointer whose size is proportional to the number of entries in the

directory. We organize the directory table as a two-dimensional

structure with NDir.ways ways and NDir.sets. The size of the direc-

tory table in our current design is fixed (derived from the applica-

tion characteristics in Section 3.1) and is entirely on-chip. Hence,

when the table capacity is exceeded, we have a dynamic mecha-

nism to collate patterns that are similar to each other into a single

entry.

SPACE Directory

Cache Lines SPACE Poin

Log2 (NDir. entries)

Figure 5: SPACE directory organization. NDir.entries = NDir.sets NDir.ways
represents the number of patterns in the directory. Ref. count indicates
reference counter associated with each sharing pattern.

In this section, we describe our directory implemented on a
multicore with 16 processors, with 64KB private L1 caches per
core, and a 16MB shared inclusive L2 cache. The conventional
full map directory design would include an entry for each cache
line for a total of 262144 (16MB/64 byte) entries. Figure 5 il-

lustrates the SPACE approach. We have a table with NDir.entries

(NDir.ways NDir.sets) entries, each entry corresponding to a shar-

ing pattern, which is represented by a 16-bit vector. For each
cache line in the L2 cache, we replace the sharing vector with a

log2(NDir.entries) bit pointer to indicate the sharing pattern. Ev-

ery time the sharer information is needed, the data block tag is first
accessed, and the associated pointer is used to index into and get
the appropriate bitmap entry in the directory table, which repre-
sents the sharer bitmap for the cache line.

Notice that SPACE essentially decouples the directory organi-
zation from the caches and can optimize the size of the directory
based on various constraints (e.g., energy, area, and/or latency). If
space is not the main constraint, we can choose to have a large
NDir.entries, all the way to the extreme case of using a unique entry

for each cache line (emulating the baseline full map approach). A

SPACE design with NDir.entries = 1 essentially defaults to a broad-

cast protocol. With on-chip directory area being an important con-
straint and with applications demonstrating regular sharing pat-
terns, we investigate SPACE designs with varying NDir.entries (see

Section 5).

 SPACE Implementation
The main structure required to incorporate SPACE in a multi-

core is the directory table that stores the sharing patterns. We or-
ganize the sharing pattern table as a set-associative structure with

NDir.ways ways and NDir.sets sets to support a total of NDir.ways ∗

NDir.sets sharing patterns. A pointer in each LLC’s (last level

cache’s) cache line tag identifies the set and way containing the
cache line’s sharing pattern and is used to index the directory table

for a sharing pattern lookup. This section describes how SPACE
inserts entries into the directory table, how patterns are dynami-
cally collated when there are no free entries, and how entries are
removed from the table.

Inserting a new pattern

When a cache line is accessed and a sharing pattern changes

(or appears for the first time), the pattern needs to be inserted in

the directory table. Once a free entry is found in the directory ta-

ble, the set index and way are used by the cache line to access the

specific entry. The key challenge is to determine where in the set-

associative directory table the new sharing pattern should be stored.

Intuitively, the hash function that calculates the set index has to be

unbiased so as to not increase pollution in any given set. With

SPACE, we also require that similar patterns map to the same set

so as to enable better collation of entries when the protocol runs out

of free directory entries.

To satisfy these two seemingly contradictory goals we use a
simple encoding scheme: we encode the full sharer bit-vector into
a compressed bit vector of fewer bits as shown in Figure 6, with
each bit standing for sharers existing in the specific cluster. For
instance, for a multicore with 16 cores in a 4x4 mesh and with

NDir.sets=16, the 16-bit sharing vector will be compressed to a 4-bit

vector, each bit corresponding to whether a sharer exists in one of

the four 2x2 clusters. Then the compressed log2(NDir.Sets) bit vec-

tor will be used to index into the directory table. This process is
illustrated in Figure 6.

The main advantage of this hashing function is that it consid-

ers all the bits in the sharing vector and removes bias towards any

specific subset of the processors. Since sharing pattern variations

within a cluster map to the same set, it also enables us to perform

effective collation of patterns (when there are no free patterns avail-

able) — extra coherence messages are limited to within the same

cluster.

Since private and globally-shared (all processors cache a copy)

patterns appear to be common patterns across all the applications,

SPACE dedicates explicit directory indices for these P + 1 patterns

(where P is the number of processors). Hence, for lines modified

by a specific processor (―M‖ state), SPACE will represent the pro-

cessor accurately, which also helps with the implementation of the

coherence protocol (see Section 3.4). Note that these entries do not

need to be backed by physical storage, since their decoded patterns

are fixed and known at design time.

Figure 6: Inserting a pattern into the directory.

...

 Set i, Way j

... ...

Incoming Pattern SPACE Directory
N

Dir. ways

Encode

...

Compare Hamming distance

Merge with

closest pattern

1001

1010 0000 0000 0001

N
 D

ir
.
s
e
ts

N
 D

ir
.
se

ts

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

103

∗
∗ [|

[|
∗

∗ ∗[| ∗

Merging with existing pattern

A key challenge that a fixed size directory needs to deal with is

the appearance of new patterns in the application when the direc-

tory is already completely filled. When the pattern is added to the

directory, SPACE searches all the ways in the particular set-index

for a matching pattern. If there exists a matching entry, SPACE will

simply provide the cache line with a pointer to this entry.

In SPACE, when the incoming sharing pattern maps to a set

with no free entries, it is merged with one of the existing patterns

in the set. Cache lines already pointing to the entry can continue

to use the sharing pattern specified although it is no longer precise.

SPACE does try to ensure that such merging minimizes the pollu-

tion of the existing entry. We achieve this by determining the ham-

ming distance of the incoming pattern to all the existing patterns

in the set. This distance is the number of bit positions in which the

incoming pattern differs from the existing pattern, and indicates the

number of extra false sharers that would be caused by the merging.

After determining this distance by an XOR function, the incom-

ing pattern will merge with the existing pattern with least hamming

distance (minimal false sharers) using the simple OR operation.

This novel technique of merging sharing patterns ensures that

existing cache lines that point to the entry will suffer minimal per-

formance penalty because of the extra sharer bits. This is one of the

key contributions of the SPACE design: when the directory runs

out of space, SPACE will dynamically collate sharing patterns sim-

ilar to each other. In comparison, a sparse directory does not con-

sider an application’s sharing patterns when compressing entries

and uses a static approach based on clusters of processors.

Removal of a stale pattern

Finally, the last challenge that needs to be addressed is to ensure

that entries in the directory are re-usable once no cache block has

the sharing pattern in the entry. Recycling entries by removing stale

patterns is vital for SPACE, because the system would otherwise

fall back to broadcast with new patterns continually merging with

stale patterns in the limited entries.

SPACE elects to use a simple scheme of reference counting to

detect when an entry becomes stale. A counter is associated with

each entry in the directory. This counter is incremented when a new

cache line starts pointing to the entry and is decremented when a

cache line pointing to the entry changes its pointer (either the cache

line was evicted or it changed its sharing pattern). The entry is re-

claimed when the counter reaches zero. For simplicity, we assume

that the counter includes log2M bits to deal with the worst case

when all the M cached lines have the same pattern. The overhead

of these counters itself is a small fraction of the overall area and

—- with a 512-entry SPACE directory and a 64MB L2 cache, the

counter bits only consumes 0.1% of the overall space consumption.

Alternatively, if a smaller reference counter size is used, in case of

saturation, additional cache lines could use additional ways in the

set or default to broadcast.

 Protocol Support for SPACE
An interesting challenge that SPACE introduces is that it is pos-

sible for the directory to provide an inaccurate list of sharers to

the coherence protocols. This occurs when SPACE merges sharing

patterns conservatively due to lack of space. Note that SPACE’s

inaccuracy will at most cause false positives (indicate processors

which are not actual sharers) but not false negatives (miss an ac-

tual sharer). Similar imprecision also exists in the existing sparse

directory designs but SPACE performs an important optimization

that resolves the case for the modified state. SPACE keeps the pri-

vate access sharing pattern locked down and ensures that the single

sharer is accurately provided to the coherence protocol. The coher-

ence protocol’s action in this case does not have to change. This

is a notable improvement over previous approaches [19], which in-

troduced additional protocol complexity to deal with imprecision

in this situation. The only inaccuracy the coherence protocol needs

to deal with is false-positive sharers for which invalidations will be

forwarded. This can be handled with an acknowledgment of in-

validation sent by a false sharer even if it does not have the cache

block. False-positive sharer invalidation is also only incurred when

the number of sharing patterns exceeds the directory capacity (or

incurs conflicts).

 Centralized or Tiled Directory Table
In tiled multicores as the one discussed in Section 2, there is

an interesting design choice for SPACE: bank and distribute a frac-

tion of the directory sharing pattern table to each tile or maintain
a centralized table for the whole chip. Distribution works well in
terms of latency without an increase in area overhead if the sharing
patterns across tiles are disjoint. However, with a line-interleaved

LLC (last level cache), overlap of sharing patterns is highly likely.
A centralized table would thus save area, since to support Npatterns

sharing patterns, a centralized directory would require Npatterns di-

rectory entries, while a tiled directory would in the worst case re-
quire Npatterns per tile.

Interestingly, comparing the overheads of tiled versus central-
ized SPACE directories is dominated by the pointers in the cache

line. For both the tiled case and the centralized case, to support

Npatterns requires log2(Npatterns) per cache line. In a 16-processor

multicore, the area overhead of the centralized-SPACE is only 1%
smaller than the tiled-SPACE with a 512-entry pattern directory ta-
ble. The centralized-SPACE does impose significant latency since
each cache bank has to communicate over the network to initiate

a directory lookup. The overheads of this directory access penalty
appeared to have a significant impact on performance and in this
paper, we focus on investigating the tiled-SPACE design.

 Area Overheads
The area overhead for SPACE includes two main components

(1) the pointers to the directory entry associated with each cache
line and (2) the sharing bit-vectors in the directory itself. Con-
sider a system that has M cache lines and P cores. Let Npatterns

be the number of sharing patterns in the application. A conven-
tional full map directory associates a P bit pointer with each cache
line and consumes M P bits. With SPACE, the pointers associated
with each cache line requires log2Npatterns and for M cache lines

consumes M log2Npatterns bits. The directory table itself is a

Npatterns P bit array. Overall, to achieve better space efficiency

than the conventional directory, the following condition has to be

satisfied: M P > M log2Npatterns + Npatterns P. The directory

can only have as many patterns as the number of cached blocks
and this value is also bounded by the number of patterns possi-
ble with a P-bit vector. Hence, the maximum value for Npatterns is

MIN(2P, M).
In our implementation of SPACE (see Figure 5), there is an ad-

ditional log2M reference count bits per table entry. We include this

overhead in Figure 7(a) and (b) to show SPACE’s storage require-

ments compared to the traditional full bit vector directory design

with varying L2 sizes for two different processor configurations.

In the case of 16 cores and a 64MB L2 cache (see Figure 7(a)),

SPACEs’ directory will have less storage overhead comparing to

the full map directory if it supports less than 42000 patterns.

The maximum possible patterns in this configuration is limited by

the number of processors to 65536 (Min (65536,1024*1024)) —

SPACE needs one 16-bit vector per cache line for the pointer to

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

104

∗

∗

'

'

[|

∗ [|
×

∗−

∗−

∗ ∗−
 −

160%

140%

120%

100%

80%

60%

40%

20%

180%

160%

140%

120%

100%

80%

60%

40%

20%

250%

225%

200%

175%

150%

125%

100%

75%

50%

25%

0%

2 3 4

0%

5 3 4 5 6 7

0%

3 4 5 6 7

10 10 10 10 10 10 10 10 10 10 10 10 10 10

Number of sharing patterns

(a) 16 processors

Number of sharing patterns

(b) 64 processors

Number of sharing patterns

(c) 4MB L2 Cache

Figure 7: SPACE’s area overhead compared to a full map directory. X axis is the number of patterns in the directory. (a) and (b) present the

overhead varying the L2 size at a fixed number of cores (16 and 64 respectively). Each line represents a specific configuration of L2. (c) presents the
overhead varying the number of cores while keeping the L2 size/core constant. The curves flat-line (or terminate) when they reach the maximum

possible number of sharing patterns possible in the system, which is MIN(2P, M).

represent all the patterns, which is exactly the same as the per cache

line vector size in full map. Even in this worst case, the extra over-

head SPACE is paying is simply the size of the directory table,

which is a small fraction of the overall L2, 0.2% of a 128MB L2

and 0.4% of a 64MB L2. In the 64 processor multicore, the max-

imum number of patterns that would need to be supported is lim-

ited by the number of cache lines, M (MIN(264, M)). As long as

the maximum number of patterns required by an application is less

than 2.5 105, SPACE will have a smaller area overhead than the

conventional directory.
As discussed in Section 3.1, most applications require the di-

rectory to maintain a small number of patterns varying between

75 – 1700. Interestingly, in this range, for multicores in the near

future (64-256 cores), the number of cache lines in the shared

cache M >> Npatterns and empirically, Npatterns << 2P. Overall,

in SPACE, the overhead of the pointers associated with each L2

cache line is the dominant overhead since M log2Npatterns >>
Npatterns (P + log2M). To study the properties of such a system,

we study the overheads of SPACE varying the number of cores

while keeping the cache size / core constant. Figure 7(c) demon-

strates that at 1000 entries (X axis start), SPACE requires 60% of

the area when compared to a full map directory for 16 cores, and

20% for 64 cores. Figure 7(c) also shows that at a large number of

entries (not required by our applications) the directory table itself

becomes a large fraction of the overall area overhead. The curves

are all terminated when they reach the maximum possible number
of sharing patterns possible in the system, which is MIN(2P, M).

Note that the size of the sharing vector will also grow linearly

with respect to the number of processors in the system (P). As a
result, in the conventional full map directory the percentage of the
whole cache used as the directory will grow linearly, and does not
scale well with the number of cores. For the SPACE design, as we

will show in Section 5, with the per cache line pointer being the
dominant overhead, the size of the pointer will grow sub-linearly
with respect to P since log2Npatterns bits are needed per cache

line, and Npatterns grows linearly with P according to our empirical

data. SPACE is therefore a more scalable approach to directory
design for multicore platforms.

4. RELATED WORK
There have been primarily three different approaches for imple-

menting the directory, (1) Shadow tag, which maintain a copy of

the address tags of each L1 cache and probes these tags to con-

struct the sharing vector, (2) Full map, which associates the sharer

bit vector with the cache line in the shared level, and (3) Directory-

cache, which stores the sharing information for a subset of the

cache lines. Shadow tags are conceptually simple and replicate

the private L1’s address tags for each processor at a logically cen-

tralized directory structure. While shadow tags work well for cur-

rent designs (e.g., Niagara2 [17]), which have a small number of

cores and small L1s, they are challenging to implement. There are

area and energy penalties for organizing and accessing a tag table

with NL1 sets NL1 ways NCores entries and associatively search-

ing NL1 ways NCores on each directory reference. Most recently,

Tagless-Lookup [19] optimized shadow tags by using a bloom filter

to conservatively represent the address tags of all the ways in an L1

cache set. Tagless-lookup uses multiple independent bloom filters

to eliminate false positives. Each bucket in the bloom filter holds

a sharing vector, which represents a conservative sharing pattern

(false positives only) for addresses that map to that bucket. It opti-

mizes the size of the shadow table down to NL1 sets NCores entries,

and has an empirical saving of 2 compared to the base shadow tag

approach. The tradeoff between SPACE and Tagless-lookup is one

of area versus dynamic energy. SPACE has higher area overheads

due to the pointer needed per L2 cache line, while tagless’s area is

proportional to the L1 cache size (much smaller than the L2). Simi-

lar to shadow tags, Tagless-lookup requires higher dynamic energy

to lookup the bloom filters and dynamically construct the shar-

ing pattern on each directory reference. With the tagless lookup,

each directory reference requires a lookup of multiple independent

bloom filters. Also, bloom filters are known to be a challenge to de-

sign [20] since false positive rates scale sub-linearly with the filter

size.

Full map directories [6] can be used to primarily target multi-

core chips with inclusive shared caches. Essentially, since a line at

the L1 cache level is included at the shared level (L2 in our base-

line system), a bit vector is directly associated with the shared level

cache line. This provides an efficient representation for shared lines

since it only uses a single address tag to represent the cache line

and represents the sharer core using one bit per core — an over-

head of T+NCores bits. Furthermore, the directory information is

accessed along with the data access and this simplifies the mech-

anism needed to update and read the directory information. The

major challenge with this approach is that typically a shared cache

is much larger than the total capacity of the L1s and hence the ca-

pacity requirements are greater than the shadow tag approach. For

example, for an Intel core 2 duo [10] (with 32KB private D-cache

and 2MB shared L2) the shadow tags approach would consume

48*512*2 bits while the full map approach would consume 32 *

 16p16MB

16p32MB

 16p64MB

 16p128MB

 64p32MB

 64p64MB

 64p128MB

 64p256MB

 16p64MB
 32p128MB
 64p256MB

128p512MB

A
re

a
 o

v
e

rh
e

a
d

A
re

a
 o

v
e

rh
e

a
d

A
re

a
 o

v
e

rh
e

a
d

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

105

× 1024 * 2 bits. The full map approach consumes 1.33 more area

than the shadow tag approach.

Coarse sharer vectors [9, 16], sharer pointers [2, 7, 11], and seg-

mented sharer vectors [8] all change the encoding of the sharer

map to represent (a subset of the) sharers more compactly. Such

designs, however, can introduce significant false-positives in the

sharer maps and/or represent only a limited number of sharers pre-

cisely and efficiently, incurring significant penalties when there is

a mismatch between the sharing pattern and the hardware encoding

scheme.

Directory caches [1, 15] seek to optimize the space by holding

sharing information for only a subset of the total number of cached

blocks. This introduces a high latency penalty for blocks that can-

not be represented in the directory. The coherence protocol either

has to invalidate all the cached copies or default to broadcast in this

situation. Since each directory cache entry is used by a single cache

line, the cache may be filled with identical sharing patterns, mak-

ing space utilization inefficient. Previous research [1] has proposed

the coupling of a small on-chip directory cache with a much larger

in-memory directory cache. This requires coherence protocol ex-

tensions to support an off-chip directory structure and pathological

cases can cause some cache lines to suffer long latencies.

 Our Approach: SPACE
In many ways, SPACE’s directory table is similar to a directory

cache and tries to optimize for the common case. SPACE, how-

ever, focuses on frequently needed sharing patterns and exploits the

overall sharing trends in the application to minimize space while

directory caches track commonly accessed cache lines. Compared

to directory caches in which each entry represents the pattern of a

unique cache block, SPACE’s pattern directory improves the uti-

lization of every entry. Each entry represents the information for

multiple cache blocks (possibly all the cache blocks) in the shared

cache. SPACE achieves this by eliminating the address tags and

using pointers in the shared cache to explicitly map a location

to a given pattern entry. This permits effective use of each pat-

tern entry since the entry is no longer associated with one specific

cache block. Furthermore, when the pattern table has no free space,

SPACE dynamically collates the blocks’ sharing pattern with a sim-

ilar pattern leading to a conservative expression that gradually in-

creases the possibility of false-positive sharers without defaulting

to the extreme measures (evicting or broadcasting) of the direc-

tory cache. SPACE has area overhead similar to the coarse vec-

tor approach, while keeping the network utilization comparable to

the full map approach. Our analytical evaluation and empirical ex-

periments reveal that we can attain performance comparable to the

baseline full map approach while requiring much less area.

5. PERFORMANCE EVALUATION

 Experiment Setup
To evaluate our proposed SPACE design, we conduct our exper-

iments on a Simics-based [12] full system execution-driven simula-

tor, which models the SPARC architecture. For cache and memory

simulation, we use Ruby from the GEMS toolset [13]. Our baseline

is a 16-tile multicore with private L1 caches and a 16-way shared

inclusive L2 cache. The multiple tiles are connected with a 4x4

mesh interconnect (for the 16-tile case). For the baseline coherence

protocol, we use a non-uniform-shared L2 (L2S) MSI directory co-

herence protocol. For the SPACE design, each tile also contains a

segment of the pattern directory table. We charge a 2 cycle penalty

(averaged across lookups and updates) for each SPACE directory

access. The cache lines in a particular tile can only use entries

from the SPACE directory associated with the tile. Table 1a shows

the parameters of our simulation framework.

For the network modeling, we use GEMS’ interconnect model.

We employ a 4x4 mesh network with virtual cut-through routing.

The link width is 16 bytes and can transmit 16 bytes/cycle. We

simulate two forms of packets: 8-byte control packets for coher-

ence messages and 72-byte payload packets for the data messages.

We use a wide range of workloads, which include commercial

server workloads [4] (Apache and SPECjbb2005), scientific ap-

plications (SPLASH2 [18]), and graph mining (Graphmine [5]).

We also include two microbenchmarks, migratory and producer-

consumer, with specific sharing patterns. Table 1b lists all the

benchmarks and the inputs used in this study. The table also in-

cludes the maximum number of access patterns for each appli-

cation, which can be correlated with the performance of a given

SPACE directory size.

We compare against the following coherence designs:

Full Map Directory (FULL)

In this system, a 16 bit sharer vector is associated with each

cache line and accurately specifies if a particular processor holds a

copy of the cache line. In our base configuration, there are a total of

1M cache lines in the L2, leading to an overall directory overhead

of 2MB.

Coarse Bit Map Directory (COARSE-8)

A potential solution to the directory space is to represent sharing

at a coarser granularity. Each cache line is associated with an 8-bit

sharer vector, with each bit representing if a block is cached in

any core of a 2-core cluster. The area overhead of the 8-bit vector

directory is exactly 50% of FULL. We demonstrate that COARSE’s

simple encoding mechanism leads to many false positives.

Broadcast (BCAST)

In this scheme, we simulate a form of ordered broadcast similar

to the AMD Hammer [3]. A request is sent from the L1 cache to the

home L2 slice before being forwarded to all tiles. The broadcast

design is representative of an extreme design point in which the

coherence protocol does not keep any sharer information. Note

that in our baseline the inclusive shared L2 will supply the data for

read accesses when the L2 copy is up to date.

BroadcastM (BCAST-M)

BCAST-M performs a simple optimization over BCAST: it

keeps extra information at each L2 cache line when an L1 has a

modified copy of the line. Maintaining a pointer to any one of 16

processors requires associating a 4-bit pointer with the cache line.

BCAST-M also represents an extreme design point for SPACE,

since in our design, the smallest SPACE directory requires owners

to be represented accurately.

SPACE-N

We also study a range of SPACE design points varying the per-

tile directory table from 32 — 512 entries. We fix the number of

sets in the table at 16 and vary the associativity.

 How accurate is SPACE?
In our first set of experiments, we estimate the accuracy of shar-

ing patterns maintained in SPACE. In a directory protocol, coher-

ence operations refer to the sharer information to forward coher-

ence messages and the accuracy of tracking sharers can have a

significant performance, network utilization, and energy impact.

Overall, we find that SPACE-256 has close to perfect accuracy,

while COARSE-8 has a significant number of false-sharer specifi-

cations, in all cases specifying at least 1 false sharer (see Figure 8).

In terms of area overhead, SPACE and COARSE-8 are comparable

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

106

'

× −→
−→

(a) Target System parameters

Processors

Processor 16 cores, 3.0 GHz, In-order

Cache parameters

Private L1
L1 Latency
Shared L2

L2 latency

64KB, 2-way, 64-byte blocks
2 cycles
64MB, 16-way, 64-byte blocks,
4MB per tile
2 cycles tag, 14 cycles data

Interconnect

Topology
Links

4x4 mesh
2 cycles, 1.5GHz, 128-bit width

Main Memory

4GB, 300 cycles

2.5

2

1.5

1

Table 1: Evaluation Framework

(b) Benchmark Suite

Benchmark Simulated problem size
Max. #

sharing patterns
Network

Utilization
Invalidation

messages rate

Apache 80000 Tx ffwd, 2000 Tx warmup,
and 3000 Tx execution

1657 11.6% 2.3%

JBB2005 350K Tx ffwd, 3000 Tx warmup,
and 3000 Tx execution

1054 8.5% 2.5%

Barnes 8K particles; run-to-completion 707 3.3% 2.3%

Cholesky lshp.0; run-to-completion 364 2.6% 2.0%

FFT 64K points; run-to-completion 104 3.7% 1.4%

LU 512x512 matrix,16x16 block;
run-to-completion

249 1.9% 1.6%

MP3D 40K molecules; 15 parallel steps 181 6.1% 20.3%

Ocean 258x258 ocean 208 5.7% 1.8%

Radix 550K 20-bit integers, radix 1024 169 5.0% 1.7%

Water 512 molecules; run-to-completion 75 2.7% 0.2%

GraphMine 340 chemical compounds, 24
atoms, 66 atom types, and 4
bonds; 300 nodes exploration

736 2.0% 2.3%

Migratory 512 exclusive access cache lines 63 0.6% 24.5%

ProdCon 2K shared cache lines and 8K pri-
vate cache lines

82 1.5% 24.9%

0.5

0
Apache Barnes Chol. FFT Graph JBB LU Migr. MP3D Ocean Prod. Radix Water

Figure 8: Average number of false positive bits per reference to the directory.

at 16 processors — 50% the size of FULL. Even SPACE-128 will

have fewer false positive bits than the 8-bit vector directory in all

the applications — SPACE-128 is 44% the size of FULL. The re-

sults confirm that SPACE’s sharing pattern collation mechanism is

an effective technique that adds false sharers incrementally, com-

pared to COARSE-8, which coarsely represents all sharing patterns

and introduces many false sharers.

SPACE also makes effective use of increased directory space.

We show that SPACE uses the increase in directory entries to ac-

curately represent the sharing patterns in the system. Interestingly,

with 32 entries, SPACE has a significant number of false positives

varying between 1-2 false positives per directory reference for most

applications. SPACE-256 corresponds to 8 more entries than

SPACE-32, and translates to a 62% increase in area compared to

SPACE-32. This indicates that SPACE also has an effective sweet

spot : it requires a certain number of directory entries to effectively

eliminate false positives and reducing the entries any further sees

diminishing returns (less area reduction and noticeable increase in

false positives).

An important operation in SPACE is merging two patterns when

the directory is out of free entries (see Section 3.3). We use a hash

function to index the incoming pattern into the directory and iden-

tify a set of entries (those with the same hash index) to compare

with. This indexing function hence directly influences the pollution

of entries in a given set, and this pollution manifests itself as false-

positive bits in the sharer pattern. Here, we compare the encoding

we described in Section 3.3 with a more simple direct hash func-

tion. In the Direct index (DIRECT) we use the lower-order proces-

sor bits in the sharing pattern as the index. We compare it against

the baseline SPACE approach, which uses an encoding technique

to cluster sharing bits corresponding to all processors when gen-

erating the encoding function. To illustrate DIRECT and SPACE;

consider the sharing patterns [0000 0010 1100 0011] and [1111

1010 1010 0011] that need to be mapped to a directory with 16 sets

(4-bit index). DIRECT maps both sharing patterns to the same set

[0011] while SPACE maps [0000 0010 1100 0011] [0111] and

[1111 0010 1100 0011] [1111]. Clearly, while the level of pol-

lution in each case is a function of the access pattern distribution,

the penalty for messages caused by false positives when the cores

are in the same cluster as in SPACE may be smaller.

Figure 8 shows the effect of this pollution: with the same num-

ber of entries (256), DIRECT-256 introduces significantly more

false sharers and performs similar to SPACE-64. Since near-

est neighbor sharing can improve application performance, it also

tends to be more common. If adjacency in the bit pattern repre-

sents distance, merging patterns/cores that are likely to share data

anyway results in fewer false positives. DIRECT-256 essentially

wastes ' 192 entries. All the SPACE designs make effective use of

COARSE−8

Direct−256

SPACE−32

SPACE−64

SPACE−128

SPACE−256

SPACE−512

A
v
e

ra
g

e
 f
a

ls
e

 p
o

s
it
iv

e
 b

it
s

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

107

×

the space by distributing the entries and effectively merging similar

patterns in a set in the absence of free entries.

The consequences of false positives in the directory are a func-

tion of the number of accesses to the entry. Figure 9 shows that for

all applications evaluated, SPACE accurately indicates sharers for

over 70% of directory references with just 128 entries at 16 pro-

cessors. Some applications like MP3D, FFT, and Water experience

100% accuracy since they have a very small number of sharing

patterns. Apache, Barnes, and SPECjbb have the lowest accuracy

because of their relative large number of irregular sharing patterns.

5.4 Performance Comparison
In this section, we study the execution time of applications in

SPACE. We show that the latency overheads on coherence mes-

sages due to false sharers are minimal when SPACE has a moderate

number of entries (128 — 256) and its performance is comparable

to FULL (see Figure 10(b)). Here, we also study the effect of a

decoupled SPACE directory on performance. Compared to FULL

in which the sharer information is accessed in parallel with the data

access, in SPACE only the directory pointer can be accessed in par-

allel with the data. Further overhead is required to index into the

SPACE directory (Section 5.5 talks about access time for various

SPACE directory sizes). We model this as a 2 cycle access penalty
1

0.8

0.6

0.4

0.2

0

>8

5-8.

4

3

2

1

0

(averaged over lookups and updates).

Comparing FULL to BCAST and BCAST-M, FULL has the

best performance since each cache line has the exact sharing in-

formation. BCAST performs (up to 12.7%) worse than FULL, but

BCAST-M’s optimization for private cache lines (the dominant ac-

cess pattern, see Figure 10(b)) improves performance significantly.

The traffic overheads in our regular mesh network has little impact

on performance for the microbenchmarks (Prod. and Migr.) since

the overall network utilization is low — BCAST and BCAST-M

perform similar to FULL. With SPACE, the dominant overhead for

such applications is the directory access penalty that SPACE adds

Figure 9: False sharer distribution in directory references at 16 pro-

cessors. SPACE directory has 128 entries.

5.3 Interconnect Traffic

Here, we demonstrate that the false sharers in SPACE do not

result in a significant increase in on-chip network traffic. The

bandwidth overheads compared to FULL directly correlate with

the small false positive bits per reference discussed in the previous

section. Bandwidth utilization would mainly be influenced by the

invalidation requests that are forwarded to the false sharers caused

by processor write requests and L2 evictions. In Table 1b, we list

the number of invalidation messages measured in each application.

Figure 10(a) shows the bandwidth overhead for the different co-

herence systems. The bandwidth utilized is measured as the to-

tal number of flits sent over the physical network. Results show

that BCAST (which does not use any sharer information) incurs

more than 10% overhead for most applications and in the worst

case not including microbenchmarks (MP3D) sends up to 2.7 the

number of flits required by FULL. SPACE with 128 entries will

increase the overhead to an average of 0.8% over FULL. Inter-

estingly, SPACE can exploit even fewer entries (32-64) for many

applications (OCEAN, Radix, Water). For Apache, SPECjbb, and

Barnes, which have a large number of sharing patterns (see Ta-

ble 1b), SPACE-128 limits the bandwidth overhead to 1% and

6% compared to FULL. SPECjbb, which experienced many traf-

fic hot spots in the mesh network, is a challenging workload for

SPACE and it needs 256-512 entries to match the performance

of FULL. SPACE demonstrated significant benefits over BCAST-

M, which demonstrates that tracking sharer information for shared

cache lines has benefits over merely identifying private data. Note

that while SPACE-32 is comparable in area overheads to BCAST-

M2, it makes use of the extra indices to track information for more

patterns than just private accesses.

2Both require log2P + 1 pointers per cache-line. BCAST-M requires

log2P + 1 because it needs log2P bits to track the processor that modified
the cache line and 1 bit to indicate if the line defaults to broadcast.

to all coherence requests that reference the directory. SPACE per-

forms marginally worse (1% and 0.5%) than BCAST and BCAST-

M in such applications.

In applications with higher network utilization, which include

Apache and SPECjbb, the network traffic saved by SPACE plays a

dominant role. SPACE-128 performs better than both BCAST and

BCAST-M. SPACE-256 and SPACE-512 have performance com-

parable to FULL. Overall, the performance of SPACE with 128 en-

tries only suffers minimal performance penalty compared to FULL

— slowdown less than 2% for all the applications except SPECjbb

(7.5% for SPECjbb). SPACE-128 is '44% the area of FULL.

 Area and Energy Metrics

Table 2: CACTI estimates for various SPACE directory sizes (The read

energy includes access of the directory pointer and the directory table
entry.)

Configuration Access
Time(ns)

Read
Energy(fJ)

SPACE-32 0.11 654
SPACE-64 0.13 706
SPACE-128 0.14 753
SPACE-256 0.17 838
SPACE-512 0.18 1482
Tagless-lookup [19] 0.34 6381

Shadow tags 0.48 43016

Table 3: Area overhead for various SPACE directory sizes

SPACE dir. size 32 64 128 256 512

Area overhead
(relative to FULL) 31.35% 37.70% 44.14% 50.78% 57.81%

We use CACTI 6.0 [14] to model energy, delay, and area at a

45nm process technology. Table 2 shows the estimated parameters

of the pattern directory table at each tile. With the small size of the

pattern directory table in all the configurations, table lookup can be

accomplished in one CPU cycle and the area overhead is less than

0.01mm2. The dynamic energy numbers include the per-cache-line

directory pointer. We also compare the SPACE parameters against

the tagless-lookup and shadow tags designs. Compared to shadow

%
 o

f
to

ta
l
d
ir

e
c
to

ry
 r

e
fe

re
n
c
e
s

A
p
a
c
h
e

B
a
rn

e
s

C
h
o
l.

F
F
T

G
ra

p
h

JB
B

L
U

M
ig

.

M
P
3
D

P
ro

d
.

O
c
e
a
n

R
a
d
ix

W
a
te

r

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

108

' ×

∗
∗

∗

∗

∗

1.1

1

0.9

0.8
Apache Barnes Chol. FFT Graph JBB LU Migr. MP3D Ocean Prod. Radix Water

(a) Interconnect traffic(measured in flits)

1.1

1

0.9

0.8
Apache Barnes Chol. FFT Graph JBB LU Migr. MP3D Ocean Prod. Radix Water

(b) Performance

Figure 10: Interconnect traffic and performance of various directory designs normalized to FULL.

tags, which construct the sharing pattern dynamically on each ac-

cess with associative lookups, SPACE achieves significant dynamic

energy savings. The SPACE directory also consumes less dynamic

energy compared to the tagless design.

The area overhead incurred by SPACE relative to FULL is

shown in Table 3. The overhead includes both the directory ta-

ble and the pointer per cache line, which is the dominant overhead

in SPACE.

Dynamic energy consumption (in fJ) per access
with 64KB private L1 and 16MB shared L2

L1 L2 (BCAST) L2 (SPACE-256) L2 (FULL)

19252 134921 135455 135989

Router/Interconnect

BufRd
762

BufWr
1690

Xbar
24177

Arbiter
402

1.24 2.52 2.39 2.68

1.1

1

0.9

0.8

Figure 11: Dynamic energy of the memory subsystem normalized to

FULL. Table shows the per-access energy used for the various compo-
nents used to drive the model.

The total dynamic energy consumption of the memory subsys-

tem is calculated based on L1 and L2 access statistics, flit traf-

fic in the on-chip network, and the SPACE directory accesses.

As Figure 11 shows, SPACE consumes energy similar to FULL

while BCAST consumes 1.05 — 2.7 more energy than either.

BCAST consumes energy in the network and for probing L1 caches

on many coherence accesses.

 Scalability
The efficiency of SPACE implicitly depends on the number of

sharing patterns frequently used and the number of cache lines

mapping to a sharing pattern. Both of these properties vary with the

machine parameters. To study the general applicability of SPACE,

we study it under three different multicores: 8C (8 core CMP, 8 MB

L2), 16C (16 core CMP, 16 MB L2) and 32C (32 core CMP, 32 MB

L2). We also vary the size of the SPACE directory between 4 P —

32 P. We evaluate its scalability using application execution time

and interconnect traffic as the metrics.

Figure 12 shows that SPACE with a limited number of entries

(SPACE-64 for 8C, SPACE-128 for 16C, and SPACE-256 for 32C)

consistently performs similar to FULL and has performance penal-

ties within 2% for all multicore configurations we tested. The net-

work traffic demonstrates a similar trend. SPACE’s performance

tends towards FULL when it is able to accurately maintain the pat-

terns present in an application when it runs on a particular config-

uration. Interestingly, the minimum number of entries required by

an effective SPACE system to deliver performance comparable to

FULL appears to be 8 P (for the applications we tested). This

suggests that the number of frequently referenced patterns tend to

be linearly correlated with P. With this trend, SPACE needs K P

entries to efficiently support a system with P cores, where K is

a small constant (our experiments seem to suggest K=8). With

K P entries in the table, each cache line needs a pointer of size

log2(P) + log2(K) (If K = 8, then log2(k)=3). Now consider the

case with the total number of shared cache lines as M. When FULL

is implemented in such a system, the total overhead of the direc-

tory is O(M ∗ P). With SPACE, the overhead of the pointers is

O(M(log2P + log2K)) −→ O(Mlog2P).

Comparison with Tagless-Lookup [19] and Shadow tags

Figure 13 shows a comparison of the area overheads. Full map

directory increases linearly with the number of cores. SPACE’s

overheads are dominated by the pointers associated with each L2

1.34 3.28 2.13 2.72 1.62 3.35 2.14

BCAST

BCAST−M

SPACE−32

SPACE−64

SPACE−128

SPACE−256

SPACE−512

BCAST

BCAST−M

SPACE−32

SPACE−64

SPACE−128

SPACE−256

SPACE−512

FULL

BCAST

SPACE−256

R
e

la
ti

v
e

 D
y
n

a
m

ic
 E

n
e

rg
y

A
p

a
c
h

e

R
e

la
ti
v
e

 p
e

rf
o

rm
a

n
c
e

R

e
la

ti
v
e

 n
u

m
b

e
r

o
f
fl
it
−
h
o
p
s

B

a
rn

e
s

C
h

o
l.

F
F

T

G
ra

p
h

J
B

B

L
U

M
ig

r.

M
P

3
D

O
c
e

a
n

P
ro

d
.

R
a

d
ix

W
a

te
r

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

109

P
e

rc
e

n
ta

g
e

 o
f

s
h

a
re

d
 L

2
 c

a
c
h

e
 c

a
p

a
c
it
y

−

× ×

1.15

1.1

1.05

14%

12%

10%

1 8%

0.95

0.9

0.85

0.8

8C 16C
Number of processors

(a) Execution Time

32C

6%

4%

2%

0%
8 16 32 64

Number of Processors

Figure 13: Storage requirements of SPACE, Shadow tags, Tagless and

Full map directory for a 64KB private L1 cache and a shared L2 cache
1.15

1.1

with 1MB / core. Note that the X axis is using a log scale. Y axis :

Percentage of the shared L2 cache capacity.

1.05

1

0.95

0.9

0.85

0.8

8C 16C 32C
Number of processors

(b) Interconnect Traffic

the conventional directory structure does not scale in size and con-

sumes a significant fraction of precious on-chip area.

In this paper, we first investigate the sharing patterns in applica-

tions. The sharing pattern of a location refers to the set of proces-

sors accessing it. We demonstrate that many applications possess

sharing pattern locality, i.e., there are a few unique patterns that

are referenced frequently and many cache lines have a common

sharing pattern. A conventional directory hence essentially stores

duplicate copies of the same sharing patterns. We exploit this ob-

servation and propose the SPACE approach, which leverages the

Figure 12: Execution time and interconnect traffic for SPACE nor-

malized to FULL. Each bar represents a specific SPACE directory size.
SPACE-KP represents SPACE with K * P entries, where P is the num-
ber of processors. X axis represents 3 different multicore systems: 8C

(8 core CMP, 8 MB L2), 16C (16 core CMP, 16 MB L2) and 32C (32
core CMP, 32 MB L2). Y axis represents the geometric mean of rela-
tive execution time and interconnect traffic of all applications.

cache line. SPACE does impose a constant factor overhead over

tagless-lookup (and shadow tags); tagless-lookup improves over

shadow tags by NL1 ways. Both tagless-lookup and shadow tags

seek to represent the information only for lines cached in the L1;

this provides notable area benefits over SPACE. The main advan-

tage of SPACE is that it streamlines the access to the directory en-

try when a cache block is accessed, thereby requiring less energy to

access the sharing pattern. The pointers to the sharing pattern are

accessed along with the L2 tag lookup and the directory table can

be organized to require fewer comparators. Tagless-lookup (and

shadow tags) require more energy-intensive table lookups on each

cache access due to the highly associative comparators necessary to

construct the sharing pattern dynamically. We believe SPACE’s de-

sign is better suited to support large multicores. Overall, SPACE is

8 and 52 more energy efficient than Tagless-lookup and shadow

tags respectively (see Section 5.5 for a detailed quantitative com-

parison).

6. CONCLUSION
Future generation multicores with a great many processors

bring with it the challenge of effectively maintaining cache coher-

ence. Directory-based protocols achieve performance scalability by

accurately maintaining information about sharers. Unfortunately,

sharing pattern commonality by completely decoupling the sharing

patterns from the shared cache and storing only a pointer to the spe-

cific pattern with each cache line. This permits all cache lines that

have the same sharing pattern to point to a common pattern entry.

We find that with a small number of entries in the pattern table, we

can effectively support a large fraction of the directory references

from cache lines: 128 — 256 entries for a 16 processor multicore

and 256 — 512 entries for a 32 processor multicore. We show that

SPACE can perform within 2% of a conventional full map direc-

tory in spite of occupying only 44% at 16 processors and 25% at

32 processors of the full map’s area. SPACE’s directory deals with

space constraints by using a dynamic collation technique to merge

patterns that are similar to each other. We demonstrate that this

technique helps reduce network traffic due to false sharer bits with

area overheads comparable to coarse-vector directories.
A key challenge with the SPACE approach is the pointers re-

quired per cache line in the shared cache. This leads to extra over-
head compared to approaches such as tagless lookup [19], which
store information only for lines in private caches. We believe that
SPACE’s key insight of exploiting sharing pattern locality and in-
troducing an extra level of indirection to store only the unique en-
tries, is generally applicable. We plan to investigate hybrid ap-
proaches between SPACE and tagless lookup [19]: combining tech-
niques from SPACE to help eliminate redundant copies of sharing
patterns with tagless lookup to eliminate the per LLC cache line
overhead.

7. REFERENCES
[1] M. E. Acacio, J. Gonzalez, J. M. Garcia, and J. Duato. A two-level

directory architecture for highly scalable cc-NUMA multiprocessors.
IEEE Trans. Parallel Distrib. Syst., 16(1):67–79, 2005.

[2] A. Agarwal, R. Simoni, J. Hennessy, and M. Horowitz. An evaluation
of directory schemes for cache coherence. In ISCA ’88: Proceedings

FULL

SPACE−4P

SPACE−8P

SPACE−16P

SPACE−32P

Full−map

 SPACE

Shadow−tags

 TagLess

R
e

la
tv

ie
 n

u
m

b
e

r
o

f
fl
it
−
h
o
p
s

R
e

la
tv

ie
 p

e
rf

o
rm

a
n

c
e

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

110

of the 15th Annual International Symposium on Computer
architecture, pages 280–298, 1988.

[3] A. Ahmed, P. Conway, B. Hughes, and F. Weber. AMD opteron
shared memory mp systems. In Proceedings of the 14th HotChips
Symposium, 2002.

[4] A. R. Alameldeen, M. M. K. Martin, C. J. Mauer, K. E. Moore,
M. Xu, M. D. Hill, D. A. Wood, and D. J. Sorin. Simulating a $2m
commercial server on a $2k pc. Computer, 36(2):50–57, 2003.

[5] G. Buehrer, S. Parthasarathy, and Y. Chen. Adaptive parallel graph
mining for CMP architectures. In Proceedings of the Sixth
International Conference on Data Mining, pages 97–106, 2006.

[6] L. M. Censier and P. Feautrier. A new solution to coherence
problems in multicache systems. IEEE Transactions on Computers,
27:1112–1118, 1978.

[7] D. Chaiken, J. Kubiatowicz, and A. Agarwal. LimitLESS directories:
A scalable cache coherence scheme. In Proceedings of the 4th
Symposium on Architectural Support for Programming Languages
and Operating Systems, pages 224–234, Apr. 1991.

[8] J. H. Choi and K. H. Park. Segment directory enhancing the limited
directory cache coherence schemes. In Proc. 13th International
Parallel and Distributed Processing Symp., pages 258–267, 1999.

[9] A. Gupta, W. dietrich Weber, and T. Mowry. Reducing memory and
traffic requirements for scalable directory-based cache coherence
schemes. In International Conference on Parallel Processing, pages
312–321, 1990.

[10] Intel Corporation. Intel Core Duo Processor and Intel Core Solo
Processor on 65 nm Process.
http://download.intel.com/design/mobile/datashts/30922106.pdf, Jan
2007.

[11] J. Laudon and D. Lenoski. The SGI origin: a ccNUMA highly
scalable server. SIGARCH Comput. Archit. News, 25(2):241–251,
1997.

[12] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren,
G. Hållberg, J. Högberg, F. Larsson, A. Moestedt, and B. Werner.
Simics: A full system simulation platform. Computer, 35(2):50–58,
2002.

[13] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu,
A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood.
Multifacet’s general execution-driven multiprocessor simulator
(GEMS) toolset. SIGARCH Comput. Archit. News, 33(4):92–99,
2005.

[14] N. Muralimanohar, R. Balasubramonian, and N. Jouppi. Optimizing
NUCA organizations and wiring alternatives for large caches with
CACTI 6.0. In Proceedings of the 40th International Symposium on
Microarchitecture, pages 3–14, 2007.

[15] B. W. O’Krafka and A. R. Newton. An empirical evaluation of two
memory-efficient directory methods. In ISCA ’90: Proceedings of the
17th annual international symposium on Computer Architecture,
pages 138–147, 1990.

[16] R. T. Simoni, Jr. Cache coherence directories for scalable
multiprocessors. PhD thesis, Stanford University, Stanford, CA,
USA, 1992.

[17] Sun Microsystems, Inc. Opensparc T2 system-on-chip (SoC)
microarchitecture specification.
http://www.opensparc.net/opensparc-t2/index.html, May 2008.

[18] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
Methodological considerations and characterization of the
SPLASH-2 parallel application suite. In Proceedings of the 22nd
Annual International Symposium on Computer Architecture, June
1995.

[19] J. Zebchuk, V. Srinivasan, M. K. Qureshi, and A. Moshovos. A
tagless coherence directory. In MICRO 42: Proceedings of the 42nd
Annual IEEE/ACM International Symposium on Microarchitecture,
pages 423–434, 2009.

[20] C. Zilles. Brief announcement: Transactional memory and the
birthday paradox. In 19th ACM Symposium on Parallelism in
Algorithms and Architectures, 2007.

http://download.intel.com/design/mobile/datashts/30922106.pdf
http://www.opensparc.net/opensparc-t2/index.html

